Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lpolpolsatN Structured version   Visualization version   GIF version

Theorem lpolpolsatN 40994
Description: Property of a polarity. (Contributed by NM, 26-Nov-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
lpolpolsat.a 𝐴 = (LSAtoms‘𝑊)
lpolpolsat.p 𝑃 = (LPol‘𝑊)
lpolpolsat.w (𝜑𝑊𝑋)
lpolpolsat.o (𝜑𝑃)
lpolpolsat.q (𝜑𝑄𝐴)
Assertion
Ref Expression
lpolpolsatN (𝜑 → ( ‘( 𝑄)) = 𝑄)

Proof of Theorem lpolpolsatN
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lpolpolsat.o . . 3 (𝜑𝑃)
2 lpolpolsat.w . . . 4 (𝜑𝑊𝑋)
3 eqid 2728 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
4 eqid 2728 . . . . 5 (LSubSp‘𝑊) = (LSubSp‘𝑊)
5 eqid 2728 . . . . 5 (0g𝑊) = (0g𝑊)
6 lpolpolsat.a . . . . 5 𝐴 = (LSAtoms‘𝑊)
7 eqid 2728 . . . . 5 (LSHyp‘𝑊) = (LSHyp‘𝑊)
8 lpolpolsat.p . . . . 5 𝑃 = (LPol‘𝑊)
93, 4, 5, 6, 7, 8islpolN 40988 . . . 4 (𝑊𝑋 → ( 𝑃 ↔ ( :𝒫 (Base‘𝑊)⟶(LSubSp‘𝑊) ∧ (( ‘(Base‘𝑊)) = {(0g𝑊)} ∧ ∀𝑥𝑦((𝑥 ⊆ (Base‘𝑊) ∧ 𝑦 ⊆ (Base‘𝑊) ∧ 𝑥𝑦) → ( 𝑦) ⊆ ( 𝑥)) ∧ ∀𝑥𝐴 (( 𝑥) ∈ (LSHyp‘𝑊) ∧ ( ‘( 𝑥)) = 𝑥)))))
102, 9syl 17 . . 3 (𝜑 → ( 𝑃 ↔ ( :𝒫 (Base‘𝑊)⟶(LSubSp‘𝑊) ∧ (( ‘(Base‘𝑊)) = {(0g𝑊)} ∧ ∀𝑥𝑦((𝑥 ⊆ (Base‘𝑊) ∧ 𝑦 ⊆ (Base‘𝑊) ∧ 𝑥𝑦) → ( 𝑦) ⊆ ( 𝑥)) ∧ ∀𝑥𝐴 (( 𝑥) ∈ (LSHyp‘𝑊) ∧ ( ‘( 𝑥)) = 𝑥)))))
111, 10mpbid 231 . 2 (𝜑 → ( :𝒫 (Base‘𝑊)⟶(LSubSp‘𝑊) ∧ (( ‘(Base‘𝑊)) = {(0g𝑊)} ∧ ∀𝑥𝑦((𝑥 ⊆ (Base‘𝑊) ∧ 𝑦 ⊆ (Base‘𝑊) ∧ 𝑥𝑦) → ( 𝑦) ⊆ ( 𝑥)) ∧ ∀𝑥𝐴 (( 𝑥) ∈ (LSHyp‘𝑊) ∧ ( ‘( 𝑥)) = 𝑥))))
12 simpr3 1193 . . 3 (( :𝒫 (Base‘𝑊)⟶(LSubSp‘𝑊) ∧ (( ‘(Base‘𝑊)) = {(0g𝑊)} ∧ ∀𝑥𝑦((𝑥 ⊆ (Base‘𝑊) ∧ 𝑦 ⊆ (Base‘𝑊) ∧ 𝑥𝑦) → ( 𝑦) ⊆ ( 𝑥)) ∧ ∀𝑥𝐴 (( 𝑥) ∈ (LSHyp‘𝑊) ∧ ( ‘( 𝑥)) = 𝑥))) → ∀𝑥𝐴 (( 𝑥) ∈ (LSHyp‘𝑊) ∧ ( ‘( 𝑥)) = 𝑥))
13 lpolpolsat.q . . . 4 (𝜑𝑄𝐴)
14 fveq2 6902 . . . . . . 7 (𝑥 = 𝑄 → ( 𝑥) = ( 𝑄))
1514eleq1d 2814 . . . . . 6 (𝑥 = 𝑄 → (( 𝑥) ∈ (LSHyp‘𝑊) ↔ ( 𝑄) ∈ (LSHyp‘𝑊)))
16 2fveq3 6907 . . . . . . 7 (𝑥 = 𝑄 → ( ‘( 𝑥)) = ( ‘( 𝑄)))
17 id 22 . . . . . . 7 (𝑥 = 𝑄𝑥 = 𝑄)
1816, 17eqeq12d 2744 . . . . . 6 (𝑥 = 𝑄 → (( ‘( 𝑥)) = 𝑥 ↔ ( ‘( 𝑄)) = 𝑄))
1915, 18anbi12d 630 . . . . 5 (𝑥 = 𝑄 → ((( 𝑥) ∈ (LSHyp‘𝑊) ∧ ( ‘( 𝑥)) = 𝑥) ↔ (( 𝑄) ∈ (LSHyp‘𝑊) ∧ ( ‘( 𝑄)) = 𝑄)))
2019rspcv 3607 . . . 4 (𝑄𝐴 → (∀𝑥𝐴 (( 𝑥) ∈ (LSHyp‘𝑊) ∧ ( ‘( 𝑥)) = 𝑥) → (( 𝑄) ∈ (LSHyp‘𝑊) ∧ ( ‘( 𝑄)) = 𝑄)))
2113, 20syl 17 . . 3 (𝜑 → (∀𝑥𝐴 (( 𝑥) ∈ (LSHyp‘𝑊) ∧ ( ‘( 𝑥)) = 𝑥) → (( 𝑄) ∈ (LSHyp‘𝑊) ∧ ( ‘( 𝑄)) = 𝑄)))
22 simpr 483 . . 3 ((( 𝑄) ∈ (LSHyp‘𝑊) ∧ ( ‘( 𝑄)) = 𝑄) → ( ‘( 𝑄)) = 𝑄)
2312, 21, 22syl56 36 . 2 (𝜑 → (( :𝒫 (Base‘𝑊)⟶(LSubSp‘𝑊) ∧ (( ‘(Base‘𝑊)) = {(0g𝑊)} ∧ ∀𝑥𝑦((𝑥 ⊆ (Base‘𝑊) ∧ 𝑦 ⊆ (Base‘𝑊) ∧ 𝑥𝑦) → ( 𝑦) ⊆ ( 𝑥)) ∧ ∀𝑥𝐴 (( 𝑥) ∈ (LSHyp‘𝑊) ∧ ( ‘( 𝑥)) = 𝑥))) → ( ‘( 𝑄)) = 𝑄))
2411, 23mpd 15 1 (𝜑 → ( ‘( 𝑄)) = 𝑄)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084  wal 1531   = wceq 1533  wcel 2098  wral 3058  wss 3949  𝒫 cpw 4606  {csn 4632  wf 6549  cfv 6553  Basecbs 17187  0gc0g 17428  LSubSpclss 20822  LSAtomsclsa 38478  LSHypclsh 38479  LPolclpoN 40985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-fv 6561  df-ov 7429  df-oprab 7430  df-mpo 7431  df-map 8853  df-lpolN 40986
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator
OSZAR »