![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lsmub2x | Structured version Visualization version GIF version |
Description: Subgroup sum is an upper bound of its arguments. (Contributed by NM, 6-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
Ref | Expression |
---|---|
lsmless2.v | ⊢ 𝐵 = (Base‘𝐺) |
lsmless2.s | ⊢ ⊕ = (LSSum‘𝐺) |
Ref | Expression |
---|---|
lsmub2x | ⊢ ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) → 𝑈 ⊆ (𝑇 ⊕ 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | submrcl 18754 | . . . . . 6 ⊢ (𝑇 ∈ (SubMnd‘𝐺) → 𝐺 ∈ Mnd) | |
2 | 1 | ad2antrr 725 | . . . . 5 ⊢ (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑈) → 𝐺 ∈ Mnd) |
3 | simpr 484 | . . . . . 6 ⊢ ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) → 𝑈 ⊆ 𝐵) | |
4 | 3 | sselda 3980 | . . . . 5 ⊢ (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ 𝐵) |
5 | lsmless2.v | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
6 | eqid 2728 | . . . . . 6 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
7 | eqid 2728 | . . . . . 6 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
8 | 5, 6, 7 | mndlid 18714 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → ((0g‘𝐺)(+g‘𝐺)𝑥) = 𝑥) |
9 | 2, 4, 8 | syl2anc 583 | . . . 4 ⊢ (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑈) → ((0g‘𝐺)(+g‘𝐺)𝑥) = 𝑥) |
10 | 5 | submss 18761 | . . . . . 6 ⊢ (𝑇 ∈ (SubMnd‘𝐺) → 𝑇 ⊆ 𝐵) |
11 | 10 | ad2antrr 725 | . . . . 5 ⊢ (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑈) → 𝑇 ⊆ 𝐵) |
12 | simplr 768 | . . . . 5 ⊢ (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑈) → 𝑈 ⊆ 𝐵) | |
13 | 7 | subm0cl 18763 | . . . . . 6 ⊢ (𝑇 ∈ (SubMnd‘𝐺) → (0g‘𝐺) ∈ 𝑇) |
14 | 13 | ad2antrr 725 | . . . . 5 ⊢ (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑈) → (0g‘𝐺) ∈ 𝑇) |
15 | simpr 484 | . . . . 5 ⊢ (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ 𝑈) | |
16 | lsmless2.s | . . . . . 6 ⊢ ⊕ = (LSSum‘𝐺) | |
17 | 5, 6, 16 | lsmelvalix 19596 | . . . . 5 ⊢ (((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ ((0g‘𝐺) ∈ 𝑇 ∧ 𝑥 ∈ 𝑈)) → ((0g‘𝐺)(+g‘𝐺)𝑥) ∈ (𝑇 ⊕ 𝑈)) |
18 | 2, 11, 12, 14, 15, 17 | syl32anc 1376 | . . . 4 ⊢ (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑈) → ((0g‘𝐺)(+g‘𝐺)𝑥) ∈ (𝑇 ⊕ 𝑈)) |
19 | 9, 18 | eqeltrrd 2830 | . . 3 ⊢ (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ (𝑇 ⊕ 𝑈)) |
20 | 19 | ex 412 | . 2 ⊢ ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) → (𝑥 ∈ 𝑈 → 𝑥 ∈ (𝑇 ⊕ 𝑈))) |
21 | 20 | ssrdv 3986 | 1 ⊢ ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ⊆ 𝐵) → 𝑈 ⊆ (𝑇 ⊕ 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ⊆ wss 3947 ‘cfv 6548 (class class class)co 7420 Basecbs 17180 +gcplusg 17233 0gc0g 17421 Mndcmnd 18694 SubMndcsubmnd 18739 LSSumclsm 19589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-nn 12244 df-2 12306 df-sets 17133 df-slot 17151 df-ndx 17163 df-base 17181 df-ress 17210 df-plusg 17246 df-0g 17423 df-mgm 18600 df-sgrp 18679 df-mnd 18695 df-submnd 18741 df-lsm 19591 |
This theorem is referenced by: lsmub2 19613 |
Copyright terms: Public domain | W3C validator |