![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lspsn | Structured version Visualization version GIF version |
Description: Span of the singleton of a vector. (Contributed by NM, 14-Jan-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lspsn.f | ⊢ 𝐹 = (Scalar‘𝑊) |
lspsn.k | ⊢ 𝐾 = (Base‘𝐹) |
lspsn.v | ⊢ 𝑉 = (Base‘𝑊) |
lspsn.t | ⊢ · = ( ·𝑠 ‘𝑊) |
lspsn.n | ⊢ 𝑁 = (LSpan‘𝑊) |
Ref | Expression |
---|---|
lspsn | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) = {𝑣 ∣ ∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2728 | . . 3 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
2 | lspsn.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
3 | simpl 482 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑊 ∈ LMod) | |
4 | lspsn.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
5 | lspsn.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
6 | lspsn.t | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
7 | lspsn.k | . . . 4 ⊢ 𝐾 = (Base‘𝐹) | |
8 | 4, 5, 6, 7, 1 | lss1d 20841 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → {𝑣 ∣ ∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋)} ∈ (LSubSp‘𝑊)) |
9 | eqid 2728 | . . . . . 6 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
10 | 5, 7, 9 | lmod1cl 20766 | . . . . 5 ⊢ (𝑊 ∈ LMod → (1r‘𝐹) ∈ 𝐾) |
11 | 4, 5, 6, 9 | lmodvs1 20767 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((1r‘𝐹) · 𝑋) = 𝑋) |
12 | 11 | eqcomd 2734 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑋 = ((1r‘𝐹) · 𝑋)) |
13 | oveq1 7422 | . . . . . 6 ⊢ (𝑘 = (1r‘𝐹) → (𝑘 · 𝑋) = ((1r‘𝐹) · 𝑋)) | |
14 | 13 | rspceeqv 3630 | . . . . 5 ⊢ (((1r‘𝐹) ∈ 𝐾 ∧ 𝑋 = ((1r‘𝐹) · 𝑋)) → ∃𝑘 ∈ 𝐾 𝑋 = (𝑘 · 𝑋)) |
15 | 10, 12, 14 | syl2an2r 684 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ∃𝑘 ∈ 𝐾 𝑋 = (𝑘 · 𝑋)) |
16 | eqeq1 2732 | . . . . . . 7 ⊢ (𝑣 = 𝑋 → (𝑣 = (𝑘 · 𝑋) ↔ 𝑋 = (𝑘 · 𝑋))) | |
17 | 16 | rexbidv 3174 | . . . . . 6 ⊢ (𝑣 = 𝑋 → (∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋) ↔ ∃𝑘 ∈ 𝐾 𝑋 = (𝑘 · 𝑋))) |
18 | 17 | elabg 3664 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ {𝑣 ∣ ∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋)} ↔ ∃𝑘 ∈ 𝐾 𝑋 = (𝑘 · 𝑋))) |
19 | 18 | adantl 481 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑋 ∈ {𝑣 ∣ ∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋)} ↔ ∃𝑘 ∈ 𝐾 𝑋 = (𝑘 · 𝑋))) |
20 | 15, 19 | mpbird 257 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ {𝑣 ∣ ∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋)}) |
21 | 1, 2, 3, 8, 20 | lspsnel5a 20874 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ⊆ {𝑣 ∣ ∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋)}) |
22 | 3 | adantr 480 | . . . . . 6 ⊢ (((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) ∧ 𝑘 ∈ 𝐾) → 𝑊 ∈ LMod) |
23 | 4, 1, 2 | lspsncl 20855 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) |
24 | 23 | adantr 480 | . . . . . 6 ⊢ (((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) ∧ 𝑘 ∈ 𝐾) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) |
25 | simpr 484 | . . . . . 6 ⊢ (((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) ∧ 𝑘 ∈ 𝐾) → 𝑘 ∈ 𝐾) | |
26 | 4, 2 | lspsnid 20871 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ (𝑁‘{𝑋})) |
27 | 26 | adantr 480 | . . . . . 6 ⊢ (((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) ∧ 𝑘 ∈ 𝐾) → 𝑋 ∈ (𝑁‘{𝑋})) |
28 | 5, 6, 7, 1 | lssvscl 20833 | . . . . . 6 ⊢ (((𝑊 ∈ LMod ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) ∧ (𝑘 ∈ 𝐾 ∧ 𝑋 ∈ (𝑁‘{𝑋}))) → (𝑘 · 𝑋) ∈ (𝑁‘{𝑋})) |
29 | 22, 24, 25, 27, 28 | syl22anc 838 | . . . . 5 ⊢ (((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) ∧ 𝑘 ∈ 𝐾) → (𝑘 · 𝑋) ∈ (𝑁‘{𝑋})) |
30 | eleq1a 2824 | . . . . 5 ⊢ ((𝑘 · 𝑋) ∈ (𝑁‘{𝑋}) → (𝑣 = (𝑘 · 𝑋) → 𝑣 ∈ (𝑁‘{𝑋}))) | |
31 | 29, 30 | syl 17 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) ∧ 𝑘 ∈ 𝐾) → (𝑣 = (𝑘 · 𝑋) → 𝑣 ∈ (𝑁‘{𝑋}))) |
32 | 31 | rexlimdva 3151 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋) → 𝑣 ∈ (𝑁‘{𝑋}))) |
33 | 32 | abssdv 4062 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → {𝑣 ∣ ∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋)} ⊆ (𝑁‘{𝑋})) |
34 | 21, 33 | eqssd 3996 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) = {𝑣 ∣ ∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 {cab 2705 ∃wrex 3066 {csn 4625 ‘cfv 6543 (class class class)co 7415 Basecbs 17174 Scalarcsca 17230 ·𝑠 cvsca 17231 1rcur 20115 LModclmod 20737 LSubSpclss 20809 LSpanclspn 20849 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-int 4946 df-iun 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7866 df-1st 7988 df-2nd 7989 df-frecs 8281 df-wrecs 8312 df-recs 8386 df-rdg 8425 df-er 8719 df-en 8959 df-dom 8960 df-sdom 8961 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-nn 12238 df-2 12300 df-sets 17127 df-slot 17145 df-ndx 17157 df-base 17175 df-plusg 17240 df-0g 17417 df-mgm 18594 df-sgrp 18673 df-mnd 18689 df-grp 18887 df-minusg 18888 df-sbg 18889 df-mgp 20069 df-ur 20116 df-ring 20169 df-lmod 20739 df-lss 20810 df-lsp 20850 |
This theorem is referenced by: lspsnel 20881 rnascl 21818 ldual1dim 38633 dia1dim2 40530 dib1dim2 40636 diclspsn 40662 dih1dimatlem 40797 rnasclg 41730 prjspeclsp 42027 |
Copyright terms: Public domain | W3C validator |