MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsnel6 Structured version   Visualization version   GIF version

Theorem lspsnel6 20890
Description: Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 8-Aug-2014.) (Revised by Mario Carneiro, 8-Jan-2015.)
Hypotheses
Ref Expression
lspsnel5.v 𝑉 = (Base‘𝑊)
lspsnel5.s 𝑆 = (LSubSp‘𝑊)
lspsnel5.n 𝑁 = (LSpan‘𝑊)
lspsnel5.w (𝜑𝑊 ∈ LMod)
lspsnel5.a (𝜑𝑈𝑆)
Assertion
Ref Expression
lspsnel6 (𝜑 → (𝑋𝑈 ↔ (𝑋𝑉 ∧ (𝑁‘{𝑋}) ⊆ 𝑈)))

Proof of Theorem lspsnel6
StepHypRef Expression
1 lspsnel5.a . . . 4 (𝜑𝑈𝑆)
2 lspsnel5.v . . . . 5 𝑉 = (Base‘𝑊)
3 lspsnel5.s . . . . 5 𝑆 = (LSubSp‘𝑊)
42, 3lssel 20833 . . . 4 ((𝑈𝑆𝑋𝑈) → 𝑋𝑉)
51, 4sylan 578 . . 3 ((𝜑𝑋𝑈) → 𝑋𝑉)
6 lspsnel5.w . . . . 5 (𝜑𝑊 ∈ LMod)
76adantr 479 . . . 4 ((𝜑𝑋𝑈) → 𝑊 ∈ LMod)
81adantr 479 . . . 4 ((𝜑𝑋𝑈) → 𝑈𝑆)
9 simpr 483 . . . 4 ((𝜑𝑋𝑈) → 𝑋𝑈)
10 lspsnel5.n . . . . 5 𝑁 = (LSpan‘𝑊)
113, 10lspsnss 20886 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑋𝑈) → (𝑁‘{𝑋}) ⊆ 𝑈)
127, 8, 9, 11syl3anc 1368 . . 3 ((𝜑𝑋𝑈) → (𝑁‘{𝑋}) ⊆ 𝑈)
135, 12jca 510 . 2 ((𝜑𝑋𝑈) → (𝑋𝑉 ∧ (𝑁‘{𝑋}) ⊆ 𝑈))
142, 10lspsnid 20889 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑋 ∈ (𝑁‘{𝑋}))
156, 14sylan 578 . . . 4 ((𝜑𝑋𝑉) → 𝑋 ∈ (𝑁‘{𝑋}))
16 ssel 3970 . . . 4 ((𝑁‘{𝑋}) ⊆ 𝑈 → (𝑋 ∈ (𝑁‘{𝑋}) → 𝑋𝑈))
1715, 16syl5com 31 . . 3 ((𝜑𝑋𝑉) → ((𝑁‘{𝑋}) ⊆ 𝑈𝑋𝑈))
1817impr 453 . 2 ((𝜑 ∧ (𝑋𝑉 ∧ (𝑁‘{𝑋}) ⊆ 𝑈)) → 𝑋𝑈)
1913, 18impbida 799 1 (𝜑 → (𝑋𝑈 ↔ (𝑋𝑉 ∧ (𝑁‘{𝑋}) ⊆ 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wss 3944  {csn 4630  cfv 6549  Basecbs 17183  LModclmod 20755  LSubSpclss 20827  LSpanclspn 20867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-0g 17426  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-grp 18901  df-lmod 20757  df-lss 20828  df-lsp 20868
This theorem is referenced by:  lspsnel5  20891  lsmelval2  20982  dihjat1lem  41028
  Copyright terms: Public domain W3C validator
OSZAR »