MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsnss Structured version   Visualization version   GIF version

Theorem lspsnss 20886
Description: The span of the singleton of a subspace member is included in the subspace. (spansnss 31453 analog.) (Contributed by NM, 9-Apr-2014.) (Revised by Mario Carneiro, 4-Sep-2014.)
Hypotheses
Ref Expression
lspsnss.s 𝑆 = (LSubSp‘𝑊)
lspsnss.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lspsnss ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑋𝑈) → (𝑁‘{𝑋}) ⊆ 𝑈)

Proof of Theorem lspsnss
StepHypRef Expression
1 snssi 4813 . 2 (𝑋𝑈 → {𝑋} ⊆ 𝑈)
2 lspsnss.s . . 3 𝑆 = (LSubSp‘𝑊)
3 lspsnss.n . . 3 𝑁 = (LSpan‘𝑊)
42, 3lspssp 20884 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆 ∧ {𝑋} ⊆ 𝑈) → (𝑁‘{𝑋}) ⊆ 𝑈)
51, 4syl3an3 1162 1 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑋𝑈) → (𝑁‘{𝑋}) ⊆ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1533  wcel 2098  wss 3944  {csn 4630  cfv 6549  LModclmod 20755  LSubSpclss 20827  LSpanclspn 20867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-0g 17426  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-grp 18901  df-lmod 20757  df-lss 20828  df-lsp 20868
This theorem is referenced by:  lspsnel3  20887  lspsnel6  20890
  Copyright terms: Public domain W3C validator
OSZAR »