![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltaddrpd | Structured version Visualization version GIF version |
Description: Adding a positive number to another number increases it. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpgecld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
rpgecld.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
Ref | Expression |
---|---|
ltaddrpd | ⊢ (𝜑 → 𝐴 < (𝐴 + 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpgecld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | rpgecld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
3 | ltaddrp 13044 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐴 < (𝐴 + 𝐵)) | |
4 | 1, 2, 3 | syl2anc 583 | 1 ⊢ (𝜑 → 𝐴 < (𝐴 + 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 class class class wbr 5148 (class class class)co 7420 ℝcr 11138 + caddc 11142 < clt 11279 ℝ+crp 13007 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-po 5590 df-so 5591 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-ov 7423 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11281 df-mnf 11282 df-ltxr 11284 df-rp 13008 |
This theorem is referenced by: ltaddrp2d 13083 xov1plusxeqvd 13508 isumltss 15827 effsumlt 16088 tanhlt1 16137 4sqlem12 16925 vdwlem1 16950 prmgaplem7 17026 chfacfscmul0 22773 chfacfpmmul0 22777 nlmvscnlem2 24615 nlmvscnlem1 24616 iccntr 24750 icccmplem2 24752 reconnlem2 24756 opnreen 24760 lebnumii 24905 ipcnlem2 25185 ipcnlem1 25186 ivthlem2 25394 ovolgelb 25422 ovollb2lem 25430 itg2monolem3 25695 dvferm1lem 25929 lhop1lem 25959 lhop 25962 dvcnvrelem1 25963 dvcnvrelem2 25964 pserdvlem1 26377 pserdv 26379 lgamgulmlem2 26975 lgamgulmlem3 26976 lgamucov 26983 perfectlem2 27176 bposlem2 27231 pntibndlem2 27537 pntlemb 27543 pntlem3 27555 tpr2rico 33513 omssubaddlem 33919 fibp1 34021 heicant 37128 itg2addnc 37147 rrnequiv 37308 2np3bcnp1 41616 2ap1caineq 41617 pellfundex 42306 rmspecfund 42329 acongeq 42404 jm3.1lem2 42439 oddfl 44659 infrpge 44733 xralrple2 44736 xrralrecnnle 44765 iooiinicc 44927 iooiinioc 44941 fsumnncl 44960 climinf 44994 lptre2pt 45028 ioodvbdlimc1lem2 45320 wallispilem4 45456 dirkertrigeqlem3 45488 dirkercncflem2 45492 fourierdlem63 45557 fourierdlem65 45559 fourierdlem75 45569 fourierdlem79 45573 fouriersw 45619 etransclem35 45657 qndenserrnbllem 45682 omeiunltfirp 45907 hoidmvlelem1 45983 hoidmvlelem3 45985 hoiqssbllem3 46012 iinhoiicc 46062 iunhoiioo 46064 vonioolem2 46069 vonicclem1 46071 preimaleiinlt 46109 smfmullem3 46181 perfectALTVlem2 47062 |
Copyright terms: Public domain | W3C validator |