Step | Hyp | Ref
| Expression |
1 | | mamucl.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝑅) |
2 | | eqid 2728 |
. . . . . 6
⊢
(0g‘𝑅) = (0g‘𝑅) |
3 | | mamuvs1.t |
. . . . . 6
⊢ · =
(.r‘𝑅) |
4 | | mamucl.r |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ Ring) |
5 | 4 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → 𝑅 ∈ Ring) |
6 | | mamudi.n |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ Fin) |
7 | 6 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → 𝑁 ∈ Fin) |
8 | | mamuvs1.x |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
9 | 8 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → 𝑋 ∈ 𝐵) |
10 | 4 | ad2antrr 725 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → 𝑅 ∈ Ring) |
11 | | mamuvs1.y |
. . . . . . . . . 10
⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑m (𝑀 × 𝑁))) |
12 | | elmapi 8861 |
. . . . . . . . . 10
⊢ (𝑌 ∈ (𝐵 ↑m (𝑀 × 𝑁)) → 𝑌:(𝑀 × 𝑁)⟶𝐵) |
13 | 11, 12 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑌:(𝑀 × 𝑁)⟶𝐵) |
14 | 13 | ad2antrr 725 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → 𝑌:(𝑀 × 𝑁)⟶𝐵) |
15 | | simplrl 776 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → 𝑖 ∈ 𝑀) |
16 | | simpr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → 𝑗 ∈ 𝑁) |
17 | 14, 15, 16 | fovcdmd 7587 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → (𝑖𝑌𝑗) ∈ 𝐵) |
18 | | mamuvs1.z |
. . . . . . . . . 10
⊢ (𝜑 → 𝑍 ∈ (𝐵 ↑m (𝑁 × 𝑂))) |
19 | | elmapi 8861 |
. . . . . . . . . 10
⊢ (𝑍 ∈ (𝐵 ↑m (𝑁 × 𝑂)) → 𝑍:(𝑁 × 𝑂)⟶𝐵) |
20 | 18, 19 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑍:(𝑁 × 𝑂)⟶𝐵) |
21 | 20 | ad2antrr 725 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → 𝑍:(𝑁 × 𝑂)⟶𝐵) |
22 | | simplrr 777 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → 𝑘 ∈ 𝑂) |
23 | 21, 16, 22 | fovcdmd 7587 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → (𝑗𝑍𝑘) ∈ 𝐵) |
24 | 1, 3, 10, 17, 23 | ringcld 20192 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → ((𝑖𝑌𝑗) · (𝑗𝑍𝑘)) ∈ 𝐵) |
25 | | eqid 2728 |
. . . . . . 7
⊢ (𝑗 ∈ 𝑁 ↦ ((𝑖𝑌𝑗) · (𝑗𝑍𝑘))) = (𝑗 ∈ 𝑁 ↦ ((𝑖𝑌𝑗) · (𝑗𝑍𝑘))) |
26 | | ovexd 7449 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → ((𝑖𝑌𝑗) · (𝑗𝑍𝑘)) ∈ V) |
27 | | fvexd 6906 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (0g‘𝑅) ∈ V) |
28 | 25, 7, 26, 27 | fsuppmptdm 9393 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑗 ∈ 𝑁 ↦ ((𝑖𝑌𝑗) · (𝑗𝑍𝑘))) finSupp (0g‘𝑅)) |
29 | 1, 2, 3, 5, 7, 9, 24, 28 | gsummulc2 20246 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑅 Σg (𝑗 ∈ 𝑁 ↦ (𝑋 · ((𝑖𝑌𝑗) · (𝑗𝑍𝑘))))) = (𝑋 · (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑌𝑗) · (𝑗𝑍𝑘)))))) |
30 | | df-ov 7417 |
. . . . . . . . . 10
⊢ (𝑖(((𝑀 × 𝑁) × {𝑋}) ∘f · 𝑌)𝑗) = ((((𝑀 × 𝑁) × {𝑋}) ∘f · 𝑌)‘〈𝑖, 𝑗〉) |
31 | | simprl 770 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → 𝑖 ∈ 𝑀) |
32 | | opelxpi 5709 |
. . . . . . . . . . . 12
⊢ ((𝑖 ∈ 𝑀 ∧ 𝑗 ∈ 𝑁) → 〈𝑖, 𝑗〉 ∈ (𝑀 × 𝑁)) |
33 | 31, 32 | sylan 579 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → 〈𝑖, 𝑗〉 ∈ (𝑀 × 𝑁)) |
34 | | mamudi.m |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑀 ∈ Fin) |
35 | | xpfi 9335 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑀 × 𝑁) ∈ Fin) |
36 | 34, 6, 35 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑀 × 𝑁) ∈ Fin) |
37 | 36 | ad2antrr 725 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → (𝑀 × 𝑁) ∈ Fin) |
38 | 8 | ad2antrr 725 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → 𝑋 ∈ 𝐵) |
39 | | ffn 6716 |
. . . . . . . . . . . . . 14
⊢ (𝑌:(𝑀 × 𝑁)⟶𝐵 → 𝑌 Fn (𝑀 × 𝑁)) |
40 | 11, 12, 39 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑌 Fn (𝑀 × 𝑁)) |
41 | 40 | ad2antrr 725 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → 𝑌 Fn (𝑀 × 𝑁)) |
42 | | df-ov 7417 |
. . . . . . . . . . . . . 14
⊢ (𝑖𝑌𝑗) = (𝑌‘〈𝑖, 𝑗〉) |
43 | 42 | eqcomi 2737 |
. . . . . . . . . . . . 13
⊢ (𝑌‘〈𝑖, 𝑗〉) = (𝑖𝑌𝑗) |
44 | 43 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) ∧ 〈𝑖, 𝑗〉 ∈ (𝑀 × 𝑁)) → (𝑌‘〈𝑖, 𝑗〉) = (𝑖𝑌𝑗)) |
45 | 37, 38, 41, 44 | ofc1 7705 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) ∧ 〈𝑖, 𝑗〉 ∈ (𝑀 × 𝑁)) → ((((𝑀 × 𝑁) × {𝑋}) ∘f · 𝑌)‘〈𝑖, 𝑗〉) = (𝑋 · (𝑖𝑌𝑗))) |
46 | 33, 45 | mpdan 686 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → ((((𝑀 × 𝑁) × {𝑋}) ∘f · 𝑌)‘〈𝑖, 𝑗〉) = (𝑋 · (𝑖𝑌𝑗))) |
47 | 30, 46 | eqtrid 2780 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → (𝑖(((𝑀 × 𝑁) × {𝑋}) ∘f · 𝑌)𝑗) = (𝑋 · (𝑖𝑌𝑗))) |
48 | 47 | oveq1d 7429 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → ((𝑖(((𝑀 × 𝑁) × {𝑋}) ∘f · 𝑌)𝑗) · (𝑗𝑍𝑘)) = ((𝑋 · (𝑖𝑌𝑗)) · (𝑗𝑍𝑘))) |
49 | 1, 3 | ringass 20186 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ (𝑖𝑌𝑗) ∈ 𝐵 ∧ (𝑗𝑍𝑘) ∈ 𝐵)) → ((𝑋 · (𝑖𝑌𝑗)) · (𝑗𝑍𝑘)) = (𝑋 · ((𝑖𝑌𝑗) · (𝑗𝑍𝑘)))) |
50 | 10, 38, 17, 23, 49 | syl13anc 1370 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → ((𝑋 · (𝑖𝑌𝑗)) · (𝑗𝑍𝑘)) = (𝑋 · ((𝑖𝑌𝑗) · (𝑗𝑍𝑘)))) |
51 | 48, 50 | eqtrd 2768 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → ((𝑖(((𝑀 × 𝑁) × {𝑋}) ∘f · 𝑌)𝑗) · (𝑗𝑍𝑘)) = (𝑋 · ((𝑖𝑌𝑗) · (𝑗𝑍𝑘)))) |
52 | 51 | mpteq2dva 5242 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑗 ∈ 𝑁 ↦ ((𝑖(((𝑀 × 𝑁) × {𝑋}) ∘f · 𝑌)𝑗) · (𝑗𝑍𝑘))) = (𝑗 ∈ 𝑁 ↦ (𝑋 · ((𝑖𝑌𝑗) · (𝑗𝑍𝑘))))) |
53 | 52 | oveq2d 7430 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖(((𝑀 × 𝑁) × {𝑋}) ∘f · 𝑌)𝑗) · (𝑗𝑍𝑘)))) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ (𝑋 · ((𝑖𝑌𝑗) · (𝑗𝑍𝑘)))))) |
54 | | mamudi.f |
. . . . . . 7
⊢ 𝐹 = (𝑅 maMul 〈𝑀, 𝑁, 𝑂〉) |
55 | 34 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → 𝑀 ∈ Fin) |
56 | | mamudi.o |
. . . . . . . 8
⊢ (𝜑 → 𝑂 ∈ Fin) |
57 | 56 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → 𝑂 ∈ Fin) |
58 | 11 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → 𝑌 ∈ (𝐵 ↑m (𝑀 × 𝑁))) |
59 | 18 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → 𝑍 ∈ (𝐵 ↑m (𝑁 × 𝑂))) |
60 | | simprr 772 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → 𝑘 ∈ 𝑂) |
61 | 54, 1, 3, 5, 55, 7,
57, 58, 59, 31, 60 | mamufv 22282 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑖(𝑌𝐹𝑍)𝑘) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑌𝑗) · (𝑗𝑍𝑘))))) |
62 | 61 | oveq2d 7430 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑋 · (𝑖(𝑌𝐹𝑍)𝑘)) = (𝑋 · (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑌𝑗) · (𝑗𝑍𝑘)))))) |
63 | 29, 53, 62 | 3eqtr4d 2778 |
. . . 4
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖(((𝑀 × 𝑁) × {𝑋}) ∘f · 𝑌)𝑗) · (𝑗𝑍𝑘)))) = (𝑋 · (𝑖(𝑌𝐹𝑍)𝑘))) |
64 | | fconst6g 6780 |
. . . . . . . . 9
⊢ (𝑋 ∈ 𝐵 → ((𝑀 × 𝑁) × {𝑋}):(𝑀 × 𝑁)⟶𝐵) |
65 | 8, 64 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ((𝑀 × 𝑁) × {𝑋}):(𝑀 × 𝑁)⟶𝐵) |
66 | 1 | fvexi 6905 |
. . . . . . . . 9
⊢ 𝐵 ∈ V |
67 | | elmapg 8851 |
. . . . . . . . 9
⊢ ((𝐵 ∈ V ∧ (𝑀 × 𝑁) ∈ Fin) → (((𝑀 × 𝑁) × {𝑋}) ∈ (𝐵 ↑m (𝑀 × 𝑁)) ↔ ((𝑀 × 𝑁) × {𝑋}):(𝑀 × 𝑁)⟶𝐵)) |
68 | 66, 36, 67 | sylancr 586 |
. . . . . . . 8
⊢ (𝜑 → (((𝑀 × 𝑁) × {𝑋}) ∈ (𝐵 ↑m (𝑀 × 𝑁)) ↔ ((𝑀 × 𝑁) × {𝑋}):(𝑀 × 𝑁)⟶𝐵)) |
69 | 65, 68 | mpbird 257 |
. . . . . . 7
⊢ (𝜑 → ((𝑀 × 𝑁) × {𝑋}) ∈ (𝐵 ↑m (𝑀 × 𝑁))) |
70 | 1, 3 | ringvcl 22293 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ ((𝑀 × 𝑁) × {𝑋}) ∈ (𝐵 ↑m (𝑀 × 𝑁)) ∧ 𝑌 ∈ (𝐵 ↑m (𝑀 × 𝑁))) → (((𝑀 × 𝑁) × {𝑋}) ∘f · 𝑌) ∈ (𝐵 ↑m (𝑀 × 𝑁))) |
71 | 4, 69, 11, 70 | syl3anc 1369 |
. . . . . 6
⊢ (𝜑 → (((𝑀 × 𝑁) × {𝑋}) ∘f · 𝑌) ∈ (𝐵 ↑m (𝑀 × 𝑁))) |
72 | 71 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (((𝑀 × 𝑁) × {𝑋}) ∘f · 𝑌) ∈ (𝐵 ↑m (𝑀 × 𝑁))) |
73 | 54, 1, 3, 5, 55, 7,
57, 72, 59, 31, 60 | mamufv 22282 |
. . . 4
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑖((((𝑀 × 𝑁) × {𝑋}) ∘f · 𝑌)𝐹𝑍)𝑘) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖(((𝑀 × 𝑁) × {𝑋}) ∘f · 𝑌)𝑗) · (𝑗𝑍𝑘))))) |
74 | | df-ov 7417 |
. . . . 5
⊢ (𝑖(((𝑀 × 𝑂) × {𝑋}) ∘f · (𝑌𝐹𝑍))𝑘) = ((((𝑀 × 𝑂) × {𝑋}) ∘f · (𝑌𝐹𝑍))‘〈𝑖, 𝑘〉) |
75 | | opelxpi 5709 |
. . . . . . 7
⊢ ((𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂) → 〈𝑖, 𝑘〉 ∈ (𝑀 × 𝑂)) |
76 | 75 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → 〈𝑖, 𝑘〉 ∈ (𝑀 × 𝑂)) |
77 | | xpfi 9335 |
. . . . . . . . 9
⊢ ((𝑀 ∈ Fin ∧ 𝑂 ∈ Fin) → (𝑀 × 𝑂) ∈ Fin) |
78 | 34, 56, 77 | syl2anc 583 |
. . . . . . . 8
⊢ (𝜑 → (𝑀 × 𝑂) ∈ Fin) |
79 | 78 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑀 × 𝑂) ∈ Fin) |
80 | 1, 4, 54, 34, 6, 56, 11, 18 | mamucl 22294 |
. . . . . . . . 9
⊢ (𝜑 → (𝑌𝐹𝑍) ∈ (𝐵 ↑m (𝑀 × 𝑂))) |
81 | | elmapi 8861 |
. . . . . . . . 9
⊢ ((𝑌𝐹𝑍) ∈ (𝐵 ↑m (𝑀 × 𝑂)) → (𝑌𝐹𝑍):(𝑀 × 𝑂)⟶𝐵) |
82 | | ffn 6716 |
. . . . . . . . 9
⊢ ((𝑌𝐹𝑍):(𝑀 × 𝑂)⟶𝐵 → (𝑌𝐹𝑍) Fn (𝑀 × 𝑂)) |
83 | 80, 81, 82 | 3syl 18 |
. . . . . . . 8
⊢ (𝜑 → (𝑌𝐹𝑍) Fn (𝑀 × 𝑂)) |
84 | 83 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑌𝐹𝑍) Fn (𝑀 × 𝑂)) |
85 | | df-ov 7417 |
. . . . . . . . 9
⊢ (𝑖(𝑌𝐹𝑍)𝑘) = ((𝑌𝐹𝑍)‘〈𝑖, 𝑘〉) |
86 | 85 | eqcomi 2737 |
. . . . . . . 8
⊢ ((𝑌𝐹𝑍)‘〈𝑖, 𝑘〉) = (𝑖(𝑌𝐹𝑍)𝑘) |
87 | 86 | a1i 11 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 〈𝑖, 𝑘〉 ∈ (𝑀 × 𝑂)) → ((𝑌𝐹𝑍)‘〈𝑖, 𝑘〉) = (𝑖(𝑌𝐹𝑍)𝑘)) |
88 | 79, 9, 84, 87 | ofc1 7705 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 〈𝑖, 𝑘〉 ∈ (𝑀 × 𝑂)) → ((((𝑀 × 𝑂) × {𝑋}) ∘f · (𝑌𝐹𝑍))‘〈𝑖, 𝑘〉) = (𝑋 · (𝑖(𝑌𝐹𝑍)𝑘))) |
89 | 76, 88 | mpdan 686 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → ((((𝑀 × 𝑂) × {𝑋}) ∘f · (𝑌𝐹𝑍))‘〈𝑖, 𝑘〉) = (𝑋 · (𝑖(𝑌𝐹𝑍)𝑘))) |
90 | 74, 89 | eqtrid 2780 |
. . . 4
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑖(((𝑀 × 𝑂) × {𝑋}) ∘f · (𝑌𝐹𝑍))𝑘) = (𝑋 · (𝑖(𝑌𝐹𝑍)𝑘))) |
91 | 63, 73, 90 | 3eqtr4d 2778 |
. . 3
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑖((((𝑀 × 𝑁) × {𝑋}) ∘f · 𝑌)𝐹𝑍)𝑘) = (𝑖(((𝑀 × 𝑂) × {𝑋}) ∘f · (𝑌𝐹𝑍))𝑘)) |
92 | 91 | ralrimivva 3196 |
. 2
⊢ (𝜑 → ∀𝑖 ∈ 𝑀 ∀𝑘 ∈ 𝑂 (𝑖((((𝑀 × 𝑁) × {𝑋}) ∘f · 𝑌)𝐹𝑍)𝑘) = (𝑖(((𝑀 × 𝑂) × {𝑋}) ∘f · (𝑌𝐹𝑍))𝑘)) |
93 | 1, 4, 54, 34, 6, 56, 71, 18 | mamucl 22294 |
. . . 4
⊢ (𝜑 → ((((𝑀 × 𝑁) × {𝑋}) ∘f · 𝑌)𝐹𝑍) ∈ (𝐵 ↑m (𝑀 × 𝑂))) |
94 | | elmapi 8861 |
. . . 4
⊢
(((((𝑀 × 𝑁) × {𝑋}) ∘f · 𝑌)𝐹𝑍) ∈ (𝐵 ↑m (𝑀 × 𝑂)) → ((((𝑀 × 𝑁) × {𝑋}) ∘f · 𝑌)𝐹𝑍):(𝑀 × 𝑂)⟶𝐵) |
95 | | ffn 6716 |
. . . 4
⊢
(((((𝑀 × 𝑁) × {𝑋}) ∘f · 𝑌)𝐹𝑍):(𝑀 × 𝑂)⟶𝐵 → ((((𝑀 × 𝑁) × {𝑋}) ∘f · 𝑌)𝐹𝑍) Fn (𝑀 × 𝑂)) |
96 | 93, 94, 95 | 3syl 18 |
. . 3
⊢ (𝜑 → ((((𝑀 × 𝑁) × {𝑋}) ∘f · 𝑌)𝐹𝑍) Fn (𝑀 × 𝑂)) |
97 | | fconst6g 6780 |
. . . . . . 7
⊢ (𝑋 ∈ 𝐵 → ((𝑀 × 𝑂) × {𝑋}):(𝑀 × 𝑂)⟶𝐵) |
98 | 8, 97 | syl 17 |
. . . . . 6
⊢ (𝜑 → ((𝑀 × 𝑂) × {𝑋}):(𝑀 × 𝑂)⟶𝐵) |
99 | | elmapg 8851 |
. . . . . . 7
⊢ ((𝐵 ∈ V ∧ (𝑀 × 𝑂) ∈ Fin) → (((𝑀 × 𝑂) × {𝑋}) ∈ (𝐵 ↑m (𝑀 × 𝑂)) ↔ ((𝑀 × 𝑂) × {𝑋}):(𝑀 × 𝑂)⟶𝐵)) |
100 | 66, 78, 99 | sylancr 586 |
. . . . . 6
⊢ (𝜑 → (((𝑀 × 𝑂) × {𝑋}) ∈ (𝐵 ↑m (𝑀 × 𝑂)) ↔ ((𝑀 × 𝑂) × {𝑋}):(𝑀 × 𝑂)⟶𝐵)) |
101 | 98, 100 | mpbird 257 |
. . . . 5
⊢ (𝜑 → ((𝑀 × 𝑂) × {𝑋}) ∈ (𝐵 ↑m (𝑀 × 𝑂))) |
102 | 1, 3 | ringvcl 22293 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ ((𝑀 × 𝑂) × {𝑋}) ∈ (𝐵 ↑m (𝑀 × 𝑂)) ∧ (𝑌𝐹𝑍) ∈ (𝐵 ↑m (𝑀 × 𝑂))) → (((𝑀 × 𝑂) × {𝑋}) ∘f · (𝑌𝐹𝑍)) ∈ (𝐵 ↑m (𝑀 × 𝑂))) |
103 | 4, 101, 80, 102 | syl3anc 1369 |
. . . 4
⊢ (𝜑 → (((𝑀 × 𝑂) × {𝑋}) ∘f · (𝑌𝐹𝑍)) ∈ (𝐵 ↑m (𝑀 × 𝑂))) |
104 | | elmapi 8861 |
. . . 4
⊢ ((((𝑀 × 𝑂) × {𝑋}) ∘f · (𝑌𝐹𝑍)) ∈ (𝐵 ↑m (𝑀 × 𝑂)) → (((𝑀 × 𝑂) × {𝑋}) ∘f · (𝑌𝐹𝑍)):(𝑀 × 𝑂)⟶𝐵) |
105 | | ffn 6716 |
. . . 4
⊢ ((((𝑀 × 𝑂) × {𝑋}) ∘f · (𝑌𝐹𝑍)):(𝑀 × 𝑂)⟶𝐵 → (((𝑀 × 𝑂) × {𝑋}) ∘f · (𝑌𝐹𝑍)) Fn (𝑀 × 𝑂)) |
106 | 103, 104,
105 | 3syl 18 |
. . 3
⊢ (𝜑 → (((𝑀 × 𝑂) × {𝑋}) ∘f · (𝑌𝐹𝑍)) Fn (𝑀 × 𝑂)) |
107 | | eqfnov2 7545 |
. . 3
⊢
((((((𝑀 ×
𝑁) × {𝑋}) ∘f · 𝑌)𝐹𝑍) Fn (𝑀 × 𝑂) ∧ (((𝑀 × 𝑂) × {𝑋}) ∘f · (𝑌𝐹𝑍)) Fn (𝑀 × 𝑂)) → (((((𝑀 × 𝑁) × {𝑋}) ∘f · 𝑌)𝐹𝑍) = (((𝑀 × 𝑂) × {𝑋}) ∘f · (𝑌𝐹𝑍)) ↔ ∀𝑖 ∈ 𝑀 ∀𝑘 ∈ 𝑂 (𝑖((((𝑀 × 𝑁) × {𝑋}) ∘f · 𝑌)𝐹𝑍)𝑘) = (𝑖(((𝑀 × 𝑂) × {𝑋}) ∘f · (𝑌𝐹𝑍))𝑘))) |
108 | 96, 106, 107 | syl2anc 583 |
. 2
⊢ (𝜑 → (((((𝑀 × 𝑁) × {𝑋}) ∘f · 𝑌)𝐹𝑍) = (((𝑀 × 𝑂) × {𝑋}) ∘f · (𝑌𝐹𝑍)) ↔ ∀𝑖 ∈ 𝑀 ∀𝑘 ∈ 𝑂 (𝑖((((𝑀 × 𝑁) × {𝑋}) ∘f · 𝑌)𝐹𝑍)𝑘) = (𝑖(((𝑀 × 𝑂) × {𝑋}) ∘f · (𝑌𝐹𝑍))𝑘))) |
109 | 92, 108 | mpbird 257 |
1
⊢ (𝜑 → ((((𝑀 × 𝑁) × {𝑋}) ∘f · 𝑌)𝐹𝑍) = (((𝑀 × 𝑂) × {𝑋}) ∘f · (𝑌𝐹𝑍))) |