![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdindp1 | Structured version Visualization version GIF version |
Description: Vector independence lemma. (Contributed by NM, 1-May-2015.) |
Ref | Expression |
---|---|
mapdindp1.v | ⊢ 𝑉 = (Base‘𝑊) |
mapdindp1.p | ⊢ + = (+g‘𝑊) |
mapdindp1.o | ⊢ 0 = (0g‘𝑊) |
mapdindp1.n | ⊢ 𝑁 = (LSpan‘𝑊) |
mapdindp1.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
mapdindp1.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
mapdindp1.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
mapdindp1.z | ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) |
mapdindp1.W | ⊢ (𝜑 → 𝑤 ∈ (𝑉 ∖ { 0 })) |
mapdindp1.e | ⊢ (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍})) |
mapdindp1.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
mapdindp1.f | ⊢ (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) |
Ref | Expression |
---|---|
mapdindp1 | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{(𝑌 + 𝑍)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdindp1.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
2 | eldifsni 4789 | . . . . . 6 ⊢ (𝑋 ∈ (𝑉 ∖ { 0 }) → 𝑋 ≠ 0 ) | |
3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑋 ≠ 0 ) |
4 | mapdindp1.w | . . . . . . . . . 10 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
5 | lveclmod 20984 | . . . . . . . . . 10 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
6 | 4, 5 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑊 ∈ LMod) |
7 | mapdindp1.o | . . . . . . . . . 10 ⊢ 0 = (0g‘𝑊) | |
8 | mapdindp1.n | . . . . . . . . . 10 ⊢ 𝑁 = (LSpan‘𝑊) | |
9 | 7, 8 | lspsn0 20885 | . . . . . . . . 9 ⊢ (𝑊 ∈ LMod → (𝑁‘{ 0 }) = { 0 }) |
10 | 6, 9 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝑁‘{ 0 }) = { 0 }) |
11 | 10 | eqeq2d 2739 | . . . . . . 7 ⊢ (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{ 0 }) ↔ (𝑁‘{𝑋}) = { 0 })) |
12 | 1 | eldifad 3957 | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
13 | mapdindp1.v | . . . . . . . . 9 ⊢ 𝑉 = (Base‘𝑊) | |
14 | 13, 7, 8 | lspsneq0 20889 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((𝑁‘{𝑋}) = { 0 } ↔ 𝑋 = 0 )) |
15 | 6, 12, 14 | syl2anc 583 | . . . . . . 7 ⊢ (𝜑 → ((𝑁‘{𝑋}) = { 0 } ↔ 𝑋 = 0 )) |
16 | 11, 15 | bitrd 279 | . . . . . 6 ⊢ (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{ 0 }) ↔ 𝑋 = 0 )) |
17 | 16 | necon3bid 2981 | . . . . 5 ⊢ (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{ 0 }) ↔ 𝑋 ≠ 0 )) |
18 | 3, 17 | mpbird 257 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{ 0 })) |
19 | 18 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → (𝑁‘{𝑋}) ≠ (𝑁‘{ 0 })) |
20 | sneq 4634 | . . . . 5 ⊢ ((𝑌 + 𝑍) = 0 → {(𝑌 + 𝑍)} = { 0 }) | |
21 | 20 | fveq2d 6895 | . . . 4 ⊢ ((𝑌 + 𝑍) = 0 → (𝑁‘{(𝑌 + 𝑍)}) = (𝑁‘{ 0 })) |
22 | 21 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → (𝑁‘{(𝑌 + 𝑍)}) = (𝑁‘{ 0 })) |
23 | 19, 22 | neeqtrrd 3011 | . 2 ⊢ ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → (𝑁‘{𝑋}) ≠ (𝑁‘{(𝑌 + 𝑍)})) |
24 | mapdindp1.ne | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
25 | 24 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
26 | mapdindp1.p | . . . 4 ⊢ + = (+g‘𝑊) | |
27 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → 𝑊 ∈ LVec) |
28 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
29 | mapdindp1.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
30 | 29 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → 𝑌 ∈ (𝑉 ∖ { 0 })) |
31 | mapdindp1.z | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) | |
32 | 31 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → 𝑍 ∈ (𝑉 ∖ { 0 })) |
33 | mapdindp1.W | . . . . 5 ⊢ (𝜑 → 𝑤 ∈ (𝑉 ∖ { 0 })) | |
34 | 33 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → 𝑤 ∈ (𝑉 ∖ { 0 })) |
35 | mapdindp1.e | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍})) | |
36 | 35 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑁‘{𝑌}) = (𝑁‘{𝑍})) |
37 | mapdindp1.f | . . . . 5 ⊢ (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) | |
38 | 37 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) |
39 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑌 + 𝑍) ≠ 0 ) | |
40 | 13, 26, 7, 8, 27, 28, 30, 32, 34, 36, 25, 38, 39 | mapdindp0 41186 | . . 3 ⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑁‘{(𝑌 + 𝑍)}) = (𝑁‘{𝑌})) |
41 | 25, 40 | neeqtrrd 3011 | . 2 ⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑁‘{𝑋}) ≠ (𝑁‘{(𝑌 + 𝑍)})) |
42 | 23, 41 | pm2.61dane 3025 | 1 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{(𝑌 + 𝑍)})) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ≠ wne 2936 ∖ cdif 3942 {csn 4624 {cpr 4626 ‘cfv 6542 (class class class)co 7414 Basecbs 17173 +gcplusg 17226 0gc0g 17414 LModclmod 20736 LSpanclspn 20848 LVecclvec 20980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-nn 12237 df-2 12299 df-3 12300 df-sets 17126 df-slot 17144 df-ndx 17156 df-base 17174 df-ress 17203 df-plusg 17239 df-mulr 17240 df-0g 17416 df-mgm 18593 df-sgrp 18672 df-mnd 18688 df-submnd 18734 df-grp 18886 df-minusg 18887 df-sbg 18888 df-subg 19071 df-cntz 19261 df-lsm 19584 df-cmn 19730 df-abl 19731 df-mgp 20068 df-rng 20086 df-ur 20115 df-ring 20168 df-oppr 20266 df-dvdsr 20289 df-unit 20290 df-invr 20320 df-drng 20619 df-lmod 20738 df-lss 20809 df-lsp 20849 df-lvec 20981 |
This theorem is referenced by: mapdh6dN 41206 mapdh6hN 41210 hdmap1l6d 41280 hdmap1l6h 41284 |
Copyright terms: Public domain | W3C validator |