![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mbfulm | Structured version Visualization version GIF version |
Description: A uniform limit of measurable functions is measurable. (This is just a corollary of the fact that a pointwise limit of measurable functions is measurable, see mbflim 25596.) (Contributed by Mario Carneiro, 18-Mar-2015.) |
Ref | Expression |
---|---|
mbfulm.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
mbfulm.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
mbfulm.f | ⊢ (𝜑 → 𝐹:𝑍⟶MblFn) |
mbfulm.u | ⊢ (𝜑 → 𝐹(⇝𝑢‘𝑆)𝐺) |
Ref | Expression |
---|---|
mbfulm | ⊢ (𝜑 → 𝐺 ∈ MblFn) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mbfulm.u | . . . 4 ⊢ (𝜑 → 𝐹(⇝𝑢‘𝑆)𝐺) | |
2 | ulmcl 26316 | . . . 4 ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → 𝐺:𝑆⟶ℂ) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → 𝐺:𝑆⟶ℂ) |
4 | 3 | feqmptd 6967 | . 2 ⊢ (𝜑 → 𝐺 = (𝑧 ∈ 𝑆 ↦ (𝐺‘𝑧))) |
5 | mbfulm.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
6 | mbfulm.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
7 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → 𝑀 ∈ ℤ) |
8 | mbfulm.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝑍⟶MblFn) | |
9 | 8 | ffnd 6723 | . . . . . 6 ⊢ (𝜑 → 𝐹 Fn 𝑍) |
10 | ulmf2 26319 | . . . . . 6 ⊢ ((𝐹 Fn 𝑍 ∧ 𝐹(⇝𝑢‘𝑆)𝐺) → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) | |
11 | 9, 1, 10 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) |
12 | 11 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) |
13 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → 𝑧 ∈ 𝑆) | |
14 | 5 | fvexi 6911 | . . . . . 6 ⊢ 𝑍 ∈ V |
15 | 14 | mptex 7235 | . . . . 5 ⊢ (𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑧)) ∈ V |
16 | 15 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → (𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑧)) ∈ V) |
17 | fveq2 6897 | . . . . . . . 8 ⊢ (𝑘 = 𝑛 → (𝐹‘𝑘) = (𝐹‘𝑛)) | |
18 | 17 | fveq1d 6899 | . . . . . . 7 ⊢ (𝑘 = 𝑛 → ((𝐹‘𝑘)‘𝑧) = ((𝐹‘𝑛)‘𝑧)) |
19 | eqid 2728 | . . . . . . 7 ⊢ (𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑧)) = (𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑧)) | |
20 | fvex 6910 | . . . . . . 7 ⊢ ((𝐹‘𝑛)‘𝑧) ∈ V | |
21 | 18, 19, 20 | fvmpt 7005 | . . . . . 6 ⊢ (𝑛 ∈ 𝑍 → ((𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑧))‘𝑛) = ((𝐹‘𝑛)‘𝑧)) |
22 | 21 | eqcomd 2734 | . . . . 5 ⊢ (𝑛 ∈ 𝑍 → ((𝐹‘𝑛)‘𝑧) = ((𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑧))‘𝑛)) |
23 | 22 | adantl 481 | . . . 4 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ 𝑛 ∈ 𝑍) → ((𝐹‘𝑛)‘𝑧) = ((𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑧))‘𝑛)) |
24 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → 𝐹(⇝𝑢‘𝑆)𝐺) |
25 | 5, 7, 12, 13, 16, 23, 24 | ulmclm 26322 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → (𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑧)) ⇝ (𝐺‘𝑧)) |
26 | 11 | ffvelcdmda 7094 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ (ℂ ↑m 𝑆)) |
27 | elmapi 8867 | . . . . . 6 ⊢ ((𝐹‘𝑘) ∈ (ℂ ↑m 𝑆) → (𝐹‘𝑘):𝑆⟶ℂ) | |
28 | 26, 27 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘):𝑆⟶ℂ) |
29 | 28 | feqmptd 6967 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝑧 ∈ 𝑆 ↦ ((𝐹‘𝑘)‘𝑧))) |
30 | 8 | ffvelcdmda 7094 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ MblFn) |
31 | 29, 30 | eqeltrrd 2830 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑧 ∈ 𝑆 ↦ ((𝐹‘𝑘)‘𝑧)) ∈ MblFn) |
32 | 28 | ffvelcdmda 7094 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → ((𝐹‘𝑘)‘𝑧) ∈ ℂ) |
33 | 32 | anasss 466 | . . 3 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆)) → ((𝐹‘𝑘)‘𝑧) ∈ ℂ) |
34 | 5, 6, 25, 31, 33 | mbflim 25596 | . 2 ⊢ (𝜑 → (𝑧 ∈ 𝑆 ↦ (𝐺‘𝑧)) ∈ MblFn) |
35 | 4, 34 | eqeltrd 2829 | 1 ⊢ (𝜑 → 𝐺 ∈ MblFn) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 Vcvv 3471 class class class wbr 5148 ↦ cmpt 5231 Fn wfn 6543 ⟶wf 6544 ‘cfv 6548 (class class class)co 7420 ↑m cmap 8844 ℂcc 11136 ℤcz 12588 ℤ≥cuz 12852 MblFncmbf 25542 ⇝𝑢culm 26311 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-inf2 9664 ax-cc 10458 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-disj 5114 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-isom 6557 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-of 7685 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-1o 8486 df-2o 8487 df-oadd 8490 df-omul 8491 df-er 8724 df-map 8846 df-pm 8847 df-en 8964 df-dom 8965 df-sdom 8966 df-fin 8967 df-sup 9465 df-inf 9466 df-oi 9533 df-dju 9924 df-card 9962 df-acn 9965 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-div 11902 df-nn 12243 df-2 12305 df-3 12306 df-n0 12503 df-z 12589 df-uz 12853 df-q 12963 df-rp 13007 df-xadd 13125 df-ioo 13360 df-ioc 13361 df-ico 13362 df-icc 13363 df-fz 13517 df-fzo 13660 df-fl 13789 df-seq 13999 df-exp 14059 df-hash 14322 df-cj 15078 df-re 15079 df-im 15080 df-sqrt 15214 df-abs 15215 df-limsup 15447 df-clim 15464 df-rlim 15465 df-sum 15665 df-xmet 21271 df-met 21272 df-ovol 25392 df-vol 25393 df-mbf 25547 df-ulm 26312 |
This theorem is referenced by: iblulm 26342 |
Copyright terms: Public domain | W3C validator |