Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mendsca Structured version   Visualization version   GIF version

Theorem mendsca 42725
Description: The module endomorphism algebra has the same scalars as the underlying module. (Contributed by Stefan O'Rear, 2-Sep-2015.) (Proof shortened by AV, 31-Oct-2024.)
Hypotheses
Ref Expression
mendsca.a 𝐴 = (MEndo‘𝑀)
mendsca.s 𝑆 = (Scalar‘𝑀)
Assertion
Ref Expression
mendsca 𝑆 = (Scalar‘𝐴)

Proof of Theorem mendsca
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6908 . . . . 5 (Scalar‘𝑀) ∈ V
2 eqid 2725 . . . . . 6 ({⟨(Base‘ndx), (𝑀 LMHom 𝑀)⟩, ⟨(+g‘ndx), (𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥f (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑀)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑀)), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑦))⟩}) = ({⟨(Base‘ndx), (𝑀 LMHom 𝑀)⟩, ⟨(+g‘ndx), (𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥f (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑀)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑀)), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑦))⟩})
32algsca 42717 . . . . 5 ((Scalar‘𝑀) ∈ V → (Scalar‘𝑀) = (Scalar‘({⟨(Base‘ndx), (𝑀 LMHom 𝑀)⟩, ⟨(+g‘ndx), (𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥f (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑀)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑀)), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑦))⟩})))
41, 3mp1i 13 . . . 4 (𝑀 ∈ V → (Scalar‘𝑀) = (Scalar‘({⟨(Base‘ndx), (𝑀 LMHom 𝑀)⟩, ⟨(+g‘ndx), (𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥f (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑀)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑀)), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑦))⟩})))
5 eqid 2725 . . . . . 6 (𝑀 LMHom 𝑀) = (𝑀 LMHom 𝑀)
6 eqid 2725 . . . . . 6 (𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥f (+g𝑀)𝑦)) = (𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥f (+g𝑀)𝑦))
7 eqid 2725 . . . . . 6 (𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥𝑦)) = (𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥𝑦))
8 eqid 2725 . . . . . 6 (Scalar‘𝑀) = (Scalar‘𝑀)
9 eqid 2725 . . . . . 6 (𝑥 ∈ (Base‘(Scalar‘𝑀)), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑦)) = (𝑥 ∈ (Base‘(Scalar‘𝑀)), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑦))
105, 6, 7, 8, 9mendval 42719 . . . . 5 (𝑀 ∈ V → (MEndo‘𝑀) = ({⟨(Base‘ndx), (𝑀 LMHom 𝑀)⟩, ⟨(+g‘ndx), (𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥f (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑀)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑀)), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑦))⟩}))
1110fveq2d 6899 . . . 4 (𝑀 ∈ V → (Scalar‘(MEndo‘𝑀)) = (Scalar‘({⟨(Base‘ndx), (𝑀 LMHom 𝑀)⟩, ⟨(+g‘ndx), (𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥f (+g𝑀)𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ (𝑀 LMHom 𝑀), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑀)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑀)), 𝑦 ∈ (𝑀 LMHom 𝑀) ↦ (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑦))⟩})))
124, 11eqtr4d 2768 . . 3 (𝑀 ∈ V → (Scalar‘𝑀) = (Scalar‘(MEndo‘𝑀)))
13 scaid 17297 . . . . . 6 Scalar = Slot (Scalar‘ndx)
1413str0 17159 . . . . 5 ∅ = (Scalar‘∅)
1514eqcomi 2734 . . . 4 (Scalar‘∅) = ∅
16 eqid 2725 . . . 4 (MEndo‘𝑀) = (MEndo‘𝑀)
1715, 16fveqprc 17161 . . 3 𝑀 ∈ V → (Scalar‘𝑀) = (Scalar‘(MEndo‘𝑀)))
1812, 17pm2.61i 182 . 2 (Scalar‘𝑀) = (Scalar‘(MEndo‘𝑀))
19 mendsca.s . 2 𝑆 = (Scalar‘𝑀)
20 mendsca.a . . 3 𝐴 = (MEndo‘𝑀)
2120fveq2i 6898 . 2 (Scalar‘𝐴) = (Scalar‘(MEndo‘𝑀))
2218, 19, 213eqtr4i 2763 1 𝑆 = (Scalar‘𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  wcel 2098  Vcvv 3461  cun 3942  c0 4322  {csn 4630  {cpr 4632  {ctp 4634  cop 4636   × cxp 5676  ccom 5682  cfv 6548  (class class class)co 7418  cmpo 7420  f cof 7682  ndxcnx 17163  Basecbs 17181  +gcplusg 17234  .rcmulr 17235  Scalarcsca 17237   ·𝑠 cvsca 17238   LMHom clmhm 20913  MEndocmend 42711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6306  df-ord 6373  df-on 6374  df-lim 6375  df-suc 6376  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7374  df-ov 7421  df-oprab 7422  df-mpo 7423  df-of 7684  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-1o 8486  df-er 8724  df-en 8964  df-dom 8965  df-sdom 8966  df-fin 8967  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-nn 12244  df-2 12306  df-3 12307  df-4 12308  df-5 12309  df-6 12310  df-n0 12504  df-z 12590  df-uz 12854  df-fz 13518  df-struct 17117  df-slot 17152  df-ndx 17164  df-base 17182  df-plusg 17247  df-mulr 17248  df-sca 17250  df-vsca 17251  df-mend 42712
This theorem is referenced by:  mendlmod  42729  mendassa  42730
  Copyright terms: Public domain W3C validator
OSZAR »