![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > modsub12d | Structured version Visualization version GIF version |
Description: Subtraction property of the modulo operation. (Contributed by Mario Carneiro, 9-Sep-2016.) |
Ref | Expression |
---|---|
modadd12d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
modadd12d.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
modadd12d.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
modadd12d.4 | ⊢ (𝜑 → 𝐷 ∈ ℝ) |
modadd12d.5 | ⊢ (𝜑 → 𝐸 ∈ ℝ+) |
modadd12d.6 | ⊢ (𝜑 → (𝐴 mod 𝐸) = (𝐵 mod 𝐸)) |
modadd12d.7 | ⊢ (𝜑 → (𝐶 mod 𝐸) = (𝐷 mod 𝐸)) |
Ref | Expression |
---|---|
modsub12d | ⊢ (𝜑 → ((𝐴 − 𝐶) mod 𝐸) = ((𝐵 − 𝐷) mod 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | modadd12d.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | modadd12d.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | modadd12d.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
4 | 3 | renegcld 11691 | . . 3 ⊢ (𝜑 → -𝐶 ∈ ℝ) |
5 | modadd12d.4 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ ℝ) | |
6 | 5 | renegcld 11691 | . . 3 ⊢ (𝜑 → -𝐷 ∈ ℝ) |
7 | modadd12d.5 | . . 3 ⊢ (𝜑 → 𝐸 ∈ ℝ+) | |
8 | modadd12d.6 | . . 3 ⊢ (𝜑 → (𝐴 mod 𝐸) = (𝐵 mod 𝐸)) | |
9 | modadd12d.7 | . . . 4 ⊢ (𝜑 → (𝐶 mod 𝐸) = (𝐷 mod 𝐸)) | |
10 | 3, 5, 7, 9 | modnegd 13946 | . . 3 ⊢ (𝜑 → (-𝐶 mod 𝐸) = (-𝐷 mod 𝐸)) |
11 | 1, 2, 4, 6, 7, 8, 10 | modadd12d 13947 | . 2 ⊢ (𝜑 → ((𝐴 + -𝐶) mod 𝐸) = ((𝐵 + -𝐷) mod 𝐸)) |
12 | 1 | recnd 11292 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
13 | 3 | recnd 11292 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
14 | 12, 13 | negsubd 11627 | . . 3 ⊢ (𝜑 → (𝐴 + -𝐶) = (𝐴 − 𝐶)) |
15 | 14 | oveq1d 7439 | . 2 ⊢ (𝜑 → ((𝐴 + -𝐶) mod 𝐸) = ((𝐴 − 𝐶) mod 𝐸)) |
16 | 2 | recnd 11292 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
17 | 5 | recnd 11292 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ ℂ) |
18 | 16, 17 | negsubd 11627 | . . 3 ⊢ (𝜑 → (𝐵 + -𝐷) = (𝐵 − 𝐷)) |
19 | 18 | oveq1d 7439 | . 2 ⊢ (𝜑 → ((𝐵 + -𝐷) mod 𝐸) = ((𝐵 − 𝐷) mod 𝐸)) |
20 | 11, 15, 19 | 3eqtr3d 2774 | 1 ⊢ (𝜑 → ((𝐴 − 𝐶) mod 𝐸) = ((𝐵 − 𝐷) mod 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 (class class class)co 7424 ℝcr 11157 + caddc 11161 − cmin 11494 -cneg 11495 ℝ+crp 13028 mod cmo 13889 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 ax-pre-sup 11236 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-er 8734 df-en 8975 df-dom 8976 df-sdom 8977 df-sup 9485 df-inf 9486 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-div 11922 df-nn 12265 df-n0 12525 df-z 12611 df-uz 12875 df-rp 13029 df-fl 13812 df-mod 13890 |
This theorem is referenced by: modsubmod 13949 modsubmodmod 13950 fermltlchr 21523 znfermltl 33241 proththd 47186 |
Copyright terms: Public domain | W3C validator |