MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrcidb Structured version   Visualization version   GIF version

Theorem mrcidb 17595
Description: A set is closed iff it is equal to its closure. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Hypothesis
Ref Expression
mrcfval.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
mrcidb (𝐶 ∈ (Moore‘𝑋) → (𝑈𝐶 ↔ (𝐹𝑈) = 𝑈))

Proof of Theorem mrcidb
StepHypRef Expression
1 mrcfval.f . . 3 𝐹 = (mrCls‘𝐶)
21mrcid 17593 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) → (𝐹𝑈) = 𝑈)
3 simpr 484 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ (𝐹𝑈) = 𝑈) → (𝐹𝑈) = 𝑈)
41mrcssv 17594 . . . . . 6 (𝐶 ∈ (Moore‘𝑋) → (𝐹𝑈) ⊆ 𝑋)
54adantr 480 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ (𝐹𝑈) = 𝑈) → (𝐹𝑈) ⊆ 𝑋)
63, 5eqsstrrd 4019 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ (𝐹𝑈) = 𝑈) → 𝑈𝑋)
71mrccl 17591 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → (𝐹𝑈) ∈ 𝐶)
86, 7syldan 590 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ (𝐹𝑈) = 𝑈) → (𝐹𝑈) ∈ 𝐶)
93, 8eqeltrrd 2830 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ (𝐹𝑈) = 𝑈) → 𝑈𝐶)
102, 9impbida 800 1 (𝐶 ∈ (Moore‘𝑋) → (𝑈𝐶 ↔ (𝐹𝑈) = 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  wss 3947  cfv 6548  Moorecmre 17562  mrClscmrc 17563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-fv 6556  df-mre 17566  df-mrc 17567
This theorem is referenced by:  mrcidb2  17598
  Copyright terms: Public domain W3C validator
OSZAR »