![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mrcidb | Structured version Visualization version GIF version |
Description: A set is closed iff it is equal to its closure. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
Ref | Expression |
---|---|
mrcfval.f | ⊢ 𝐹 = (mrCls‘𝐶) |
Ref | Expression |
---|---|
mrcidb | ⊢ (𝐶 ∈ (Moore‘𝑋) → (𝑈 ∈ 𝐶 ↔ (𝐹‘𝑈) = 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mrcfval.f | . . 3 ⊢ 𝐹 = (mrCls‘𝐶) | |
2 | 1 | mrcid 17593 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ∈ 𝐶) → (𝐹‘𝑈) = 𝑈) |
3 | simpr 484 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ (𝐹‘𝑈) = 𝑈) → (𝐹‘𝑈) = 𝑈) | |
4 | 1 | mrcssv 17594 | . . . . . 6 ⊢ (𝐶 ∈ (Moore‘𝑋) → (𝐹‘𝑈) ⊆ 𝑋) |
5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ (𝐹‘𝑈) = 𝑈) → (𝐹‘𝑈) ⊆ 𝑋) |
6 | 3, 5 | eqsstrrd 4019 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ (𝐹‘𝑈) = 𝑈) → 𝑈 ⊆ 𝑋) |
7 | 1 | mrccl 17591 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → (𝐹‘𝑈) ∈ 𝐶) |
8 | 6, 7 | syldan 590 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ (𝐹‘𝑈) = 𝑈) → (𝐹‘𝑈) ∈ 𝐶) |
9 | 3, 8 | eqeltrrd 2830 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ (𝐹‘𝑈) = 𝑈) → 𝑈 ∈ 𝐶) |
10 | 2, 9 | impbida 800 | 1 ⊢ (𝐶 ∈ (Moore‘𝑋) → (𝑈 ∈ 𝐶 ↔ (𝐹‘𝑈) = 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ⊆ wss 3947 ‘cfv 6548 Moorecmre 17562 mrClscmrc 17563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-fv 6556 df-mre 17566 df-mrc 17567 |
This theorem is referenced by: mrcidb2 17598 |
Copyright terms: Public domain | W3C validator |