![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulgass3 | Structured version Visualization version GIF version |
Description: An associative property between group multiple and ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015.) |
Ref | Expression |
---|---|
mulgass3.b | ⊢ 𝐵 = (Base‘𝑅) |
mulgass3.m | ⊢ · = (.g‘𝑅) |
mulgass3.t | ⊢ × = (.r‘𝑅) |
Ref | Expression |
---|---|
mulgass3 | ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 × (𝑁 · 𝑌)) = (𝑁 · (𝑋 × 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2728 | . . . . . 6 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
2 | 1 | opprring 20286 | . . . . 5 ⊢ (𝑅 ∈ Ring → (oppr‘𝑅) ∈ Ring) |
3 | 2 | adantr 480 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (oppr‘𝑅) ∈ Ring) |
4 | simpr1 1192 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑁 ∈ ℤ) | |
5 | simpr3 1194 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
6 | simpr2 1193 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
7 | mulgass3.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
8 | 1, 7 | opprbas 20280 | . . . . 5 ⊢ 𝐵 = (Base‘(oppr‘𝑅)) |
9 | eqid 2728 | . . . . 5 ⊢ (.g‘(oppr‘𝑅)) = (.g‘(oppr‘𝑅)) | |
10 | eqid 2728 | . . . . 5 ⊢ (.r‘(oppr‘𝑅)) = (.r‘(oppr‘𝑅)) | |
11 | 8, 9, 10 | mulgass2 20245 | . . . 4 ⊢ (((oppr‘𝑅) ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑁(.g‘(oppr‘𝑅))𝑌)(.r‘(oppr‘𝑅))𝑋) = (𝑁(.g‘(oppr‘𝑅))(𝑌(.r‘(oppr‘𝑅))𝑋))) |
12 | 3, 4, 5, 6, 11 | syl13anc 1370 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑁(.g‘(oppr‘𝑅))𝑌)(.r‘(oppr‘𝑅))𝑋) = (𝑁(.g‘(oppr‘𝑅))(𝑌(.r‘(oppr‘𝑅))𝑋))) |
13 | mulgass3.t | . . . 4 ⊢ × = (.r‘𝑅) | |
14 | 7, 13, 1, 10 | opprmul 20276 | . . 3 ⊢ ((𝑁(.g‘(oppr‘𝑅))𝑌)(.r‘(oppr‘𝑅))𝑋) = (𝑋 × (𝑁(.g‘(oppr‘𝑅))𝑌)) |
15 | 7, 13, 1, 10 | opprmul 20276 | . . . 4 ⊢ (𝑌(.r‘(oppr‘𝑅))𝑋) = (𝑋 × 𝑌) |
16 | 15 | oveq2i 7431 | . . 3 ⊢ (𝑁(.g‘(oppr‘𝑅))(𝑌(.r‘(oppr‘𝑅))𝑋)) = (𝑁(.g‘(oppr‘𝑅))(𝑋 × 𝑌)) |
17 | 12, 14, 16 | 3eqtr3g 2791 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 × (𝑁(.g‘(oppr‘𝑅))𝑌)) = (𝑁(.g‘(oppr‘𝑅))(𝑋 × 𝑌))) |
18 | mulgass3.m | . . . . 5 ⊢ · = (.g‘𝑅) | |
19 | 7 | a1i 11 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝐵 = (Base‘𝑅)) |
20 | 8 | a1i 11 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝐵 = (Base‘(oppr‘𝑅))) |
21 | ssv 4004 | . . . . . 6 ⊢ 𝐵 ⊆ V | |
22 | 21 | a1i 11 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝐵 ⊆ V) |
23 | ovexd 7455 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥(+g‘𝑅)𝑦) ∈ V) | |
24 | eqid 2728 | . . . . . . . 8 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
25 | 1, 24 | oppradd 20282 | . . . . . . 7 ⊢ (+g‘𝑅) = (+g‘(oppr‘𝑅)) |
26 | 25 | oveqi 7433 | . . . . . 6 ⊢ (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘(oppr‘𝑅))𝑦) |
27 | 26 | a1i 11 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘(oppr‘𝑅))𝑦)) |
28 | 18, 9, 19, 20, 22, 23, 27 | mulgpropd 19071 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → · = (.g‘(oppr‘𝑅))) |
29 | 28 | oveqd 7437 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑁 · 𝑌) = (𝑁(.g‘(oppr‘𝑅))𝑌)) |
30 | 29 | oveq2d 7436 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 × (𝑁 · 𝑌)) = (𝑋 × (𝑁(.g‘(oppr‘𝑅))𝑌))) |
31 | 28 | oveqd 7437 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑁 · (𝑋 × 𝑌)) = (𝑁(.g‘(oppr‘𝑅))(𝑋 × 𝑌))) |
32 | 17, 30, 31 | 3eqtr4d 2778 | 1 ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 × (𝑁 · 𝑌)) = (𝑁 · (𝑋 × 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 Vcvv 3471 ⊆ wss 3947 ‘cfv 6548 (class class class)co 7420 ℤcz 12589 Basecbs 17180 +gcplusg 17233 .rcmulr 17234 .gcmg 19023 Ringcrg 20173 opprcoppr 20272 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-tpos 8232 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-nn 12244 df-2 12306 df-3 12307 df-n0 12504 df-z 12590 df-uz 12854 df-fz 13518 df-seq 14000 df-sets 17133 df-slot 17151 df-ndx 17163 df-base 17181 df-plusg 17246 df-mulr 17247 df-0g 17423 df-mgm 18600 df-sgrp 18679 df-mnd 18695 df-grp 18893 df-minusg 18894 df-mulg 19024 df-cmn 19737 df-abl 19738 df-mgp 20075 df-rng 20093 df-ur 20122 df-ring 20175 df-oppr 20273 |
This theorem is referenced by: zlmassa 21836 psdvsca 22088 psdmul 22090 |
Copyright terms: Public domain | W3C validator |