![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulgval | Structured version Visualization version GIF version |
Description: Value of the group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014.) |
Ref | Expression |
---|---|
mulgval.b | ⊢ 𝐵 = (Base‘𝐺) |
mulgval.p | ⊢ + = (+g‘𝐺) |
mulgval.o | ⊢ 0 = (0g‘𝐺) |
mulgval.i | ⊢ 𝐼 = (invg‘𝐺) |
mulgval.t | ⊢ · = (.g‘𝐺) |
mulgval.s | ⊢ 𝑆 = seq1( + , (ℕ × {𝑋})) |
Ref | Expression |
---|---|
mulgval | ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = if(𝑁 = 0, 0 , if(0 < 𝑁, (𝑆‘𝑁), (𝐼‘(𝑆‘-𝑁))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 481 | . . . 4 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → 𝑛 = 𝑁) | |
2 | 1 | eqeq1d 2730 | . . 3 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → (𝑛 = 0 ↔ 𝑁 = 0)) |
3 | 1 | breq2d 5164 | . . . 4 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → (0 < 𝑛 ↔ 0 < 𝑁)) |
4 | simpr 483 | . . . . . . . . 9 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → 𝑥 = 𝑋) | |
5 | 4 | sneqd 4644 | . . . . . . . 8 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → {𝑥} = {𝑋}) |
6 | 5 | xpeq2d 5712 | . . . . . . 7 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → (ℕ × {𝑥}) = (ℕ × {𝑋})) |
7 | 6 | seqeq3d 14014 | . . . . . 6 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → seq1( + , (ℕ × {𝑥})) = seq1( + , (ℕ × {𝑋}))) |
8 | mulgval.s | . . . . . 6 ⊢ 𝑆 = seq1( + , (ℕ × {𝑋})) | |
9 | 7, 8 | eqtr4di 2786 | . . . . 5 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → seq1( + , (ℕ × {𝑥})) = 𝑆) |
10 | 9, 1 | fveq12d 6909 | . . . 4 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → (seq1( + , (ℕ × {𝑥}))‘𝑛) = (𝑆‘𝑁)) |
11 | 1 | negeqd 11492 | . . . . . 6 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → -𝑛 = -𝑁) |
12 | 9, 11 | fveq12d 6909 | . . . . 5 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → (seq1( + , (ℕ × {𝑥}))‘-𝑛) = (𝑆‘-𝑁)) |
13 | 12 | fveq2d 6906 | . . . 4 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)) = (𝐼‘(𝑆‘-𝑁))) |
14 | 3, 10, 13 | ifbieq12d 4560 | . . 3 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))) = if(0 < 𝑁, (𝑆‘𝑁), (𝐼‘(𝑆‘-𝑁)))) |
15 | 2, 14 | ifbieq2d 4558 | . 2 ⊢ ((𝑛 = 𝑁 ∧ 𝑥 = 𝑋) → if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))) = if(𝑁 = 0, 0 , if(0 < 𝑁, (𝑆‘𝑁), (𝐼‘(𝑆‘-𝑁))))) |
16 | mulgval.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
17 | mulgval.p | . . 3 ⊢ + = (+g‘𝐺) | |
18 | mulgval.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
19 | mulgval.i | . . 3 ⊢ 𝐼 = (invg‘𝐺) | |
20 | mulgval.t | . . 3 ⊢ · = (.g‘𝐺) | |
21 | 16, 17, 18, 19, 20 | mulgfval 19032 | . 2 ⊢ · = (𝑛 ∈ ℤ, 𝑥 ∈ 𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))))) |
22 | 18 | fvexi 6916 | . . 3 ⊢ 0 ∈ V |
23 | fvex 6915 | . . . 4 ⊢ (𝑆‘𝑁) ∈ V | |
24 | fvex 6915 | . . . 4 ⊢ (𝐼‘(𝑆‘-𝑁)) ∈ V | |
25 | 23, 24 | ifex 4582 | . . 3 ⊢ if(0 < 𝑁, (𝑆‘𝑁), (𝐼‘(𝑆‘-𝑁))) ∈ V |
26 | 22, 25 | ifex 4582 | . 2 ⊢ if(𝑁 = 0, 0 , if(0 < 𝑁, (𝑆‘𝑁), (𝐼‘(𝑆‘-𝑁)))) ∈ V |
27 | 15, 21, 26 | ovmpoa 7582 | 1 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = if(𝑁 = 0, 0 , if(0 < 𝑁, (𝑆‘𝑁), (𝐼‘(𝑆‘-𝑁))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ifcif 4532 {csn 4632 class class class wbr 5152 × cxp 5680 ‘cfv 6553 (class class class)co 7426 0cc0 11146 1c1 11147 < clt 11286 -cneg 11483 ℕcn 12250 ℤcz 12596 seqcseq 14006 Basecbs 17187 +gcplusg 17240 0gc0g 17428 invgcminusg 18898 .gcmg 19030 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-er 8731 df-en 8971 df-dom 8972 df-sdom 8973 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12251 df-n0 12511 df-z 12597 df-uz 12861 df-seq 14007 df-mulg 19031 |
This theorem is referenced by: mulg0 19037 mulgnn 19038 mulgnegnn 19046 subgmulg 19102 |
Copyright terms: Public domain | W3C validator |