MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgval Structured version   Visualization version   GIF version

Theorem mulgval 19034
Description: Value of the group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulgval.b 𝐵 = (Base‘𝐺)
mulgval.p + = (+g𝐺)
mulgval.o 0 = (0g𝐺)
mulgval.i 𝐼 = (invg𝐺)
mulgval.t · = (.g𝐺)
mulgval.s 𝑆 = seq1( + , (ℕ × {𝑋}))
Assertion
Ref Expression
mulgval ((𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 · 𝑋) = if(𝑁 = 0, 0 , if(0 < 𝑁, (𝑆𝑁), (𝐼‘(𝑆‘-𝑁)))))

Proof of Theorem mulgval
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 481 . . . 4 ((𝑛 = 𝑁𝑥 = 𝑋) → 𝑛 = 𝑁)
21eqeq1d 2730 . . 3 ((𝑛 = 𝑁𝑥 = 𝑋) → (𝑛 = 0 ↔ 𝑁 = 0))
31breq2d 5164 . . . 4 ((𝑛 = 𝑁𝑥 = 𝑋) → (0 < 𝑛 ↔ 0 < 𝑁))
4 simpr 483 . . . . . . . . 9 ((𝑛 = 𝑁𝑥 = 𝑋) → 𝑥 = 𝑋)
54sneqd 4644 . . . . . . . 8 ((𝑛 = 𝑁𝑥 = 𝑋) → {𝑥} = {𝑋})
65xpeq2d 5712 . . . . . . 7 ((𝑛 = 𝑁𝑥 = 𝑋) → (ℕ × {𝑥}) = (ℕ × {𝑋}))
76seqeq3d 14014 . . . . . 6 ((𝑛 = 𝑁𝑥 = 𝑋) → seq1( + , (ℕ × {𝑥})) = seq1( + , (ℕ × {𝑋})))
8 mulgval.s . . . . . 6 𝑆 = seq1( + , (ℕ × {𝑋}))
97, 8eqtr4di 2786 . . . . 5 ((𝑛 = 𝑁𝑥 = 𝑋) → seq1( + , (ℕ × {𝑥})) = 𝑆)
109, 1fveq12d 6909 . . . 4 ((𝑛 = 𝑁𝑥 = 𝑋) → (seq1( + , (ℕ × {𝑥}))‘𝑛) = (𝑆𝑁))
111negeqd 11492 . . . . . 6 ((𝑛 = 𝑁𝑥 = 𝑋) → -𝑛 = -𝑁)
129, 11fveq12d 6909 . . . . 5 ((𝑛 = 𝑁𝑥 = 𝑋) → (seq1( + , (ℕ × {𝑥}))‘-𝑛) = (𝑆‘-𝑁))
1312fveq2d 6906 . . . 4 ((𝑛 = 𝑁𝑥 = 𝑋) → (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)) = (𝐼‘(𝑆‘-𝑁)))
143, 10, 13ifbieq12d 4560 . . 3 ((𝑛 = 𝑁𝑥 = 𝑋) → if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛))) = if(0 < 𝑁, (𝑆𝑁), (𝐼‘(𝑆‘-𝑁))))
152, 14ifbieq2d 4558 . 2 ((𝑛 = 𝑁𝑥 = 𝑋) → if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))) = if(𝑁 = 0, 0 , if(0 < 𝑁, (𝑆𝑁), (𝐼‘(𝑆‘-𝑁)))))
16 mulgval.b . . 3 𝐵 = (Base‘𝐺)
17 mulgval.p . . 3 + = (+g𝐺)
18 mulgval.o . . 3 0 = (0g𝐺)
19 mulgval.i . . 3 𝐼 = (invg𝐺)
20 mulgval.t . . 3 · = (.g𝐺)
2116, 17, 18, 19, 20mulgfval 19032 . 2 · = (𝑛 ∈ ℤ, 𝑥𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))))
2218fvexi 6916 . . 3 0 ∈ V
23 fvex 6915 . . . 4 (𝑆𝑁) ∈ V
24 fvex 6915 . . . 4 (𝐼‘(𝑆‘-𝑁)) ∈ V
2523, 24ifex 4582 . . 3 if(0 < 𝑁, (𝑆𝑁), (𝐼‘(𝑆‘-𝑁))) ∈ V
2622, 25ifex 4582 . 2 if(𝑁 = 0, 0 , if(0 < 𝑁, (𝑆𝑁), (𝐼‘(𝑆‘-𝑁)))) ∈ V
2715, 21, 26ovmpoa 7582 1 ((𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 · 𝑋) = if(𝑁 = 0, 0 , if(0 < 𝑁, (𝑆𝑁), (𝐼‘(𝑆‘-𝑁)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  ifcif 4532  {csn 4632   class class class wbr 5152   × cxp 5680  cfv 6553  (class class class)co 7426  0cc0 11146  1c1 11147   < clt 11286  -cneg 11483  cn 12250  cz 12596  seqcseq 14006  Basecbs 17187  +gcplusg 17240  0gc0g 17428  invgcminusg 18898  .gcmg 19030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-er 8731  df-en 8971  df-dom 8972  df-sdom 8973  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12251  df-n0 12511  df-z 12597  df-uz 12861  df-seq 14007  df-mulg 19031
This theorem is referenced by:  mulg0  19037  mulgnn  19038  mulgnegnn  19046  subgmulg  19102
  Copyright terms: Public domain W3C validator
OSZAR »