MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  naddcl Structured version   Visualization version   GIF version

Theorem naddcl 8691
Description: Closure law for natural addition. (Contributed by Scott Fenton, 26-Aug-2024.)
Assertion
Ref Expression
naddcl ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +no 𝐵) ∈ On)

Proof of Theorem naddcl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 naddcllem 8690 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +no 𝐵) ∈ On ∧ (𝐴 +no 𝐵) = {𝑥 ∈ On ∣ (( +no “ ({𝐴} × 𝐵)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝐵})) ⊆ 𝑥)}))
21simpld 494 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +no 𝐵) ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  {crab 3428  wss 3945  {csn 4624   cint 4944   × cxp 5670  cima 5675  Oncon0 6363  (class class class)co 7414   +no cnadd 8679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7987  df-2nd 7988  df-frecs 8280  df-nadd 8680
This theorem is referenced by:  naddf  8695  naddssim  8699  naddel1  8701  naddss1  8703  naddasslem1  8708  naddasslem2  8709  nadd4  8712  naddel12  8714  addsproplem2  27880  addsprop  27886  mulsproplem5  28013  mulsproplem6  28014  mulsproplem7  28015  mulsproplem8  28016  mulsprop  28023  naddsuc2  42816  naddass1  42817  naddgeoa  42818  naddwordnexlem4  42825
  Copyright terms: Public domain W3C validator
OSZAR »