Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  naddcnffo Structured version   Visualization version   GIF version

Theorem naddcnffo 42793
Description: Addition of Cantor normal forms is a function onto Cantor normal forms. (Contributed by RP, 2-Jan-2025.)
Assertion
Ref Expression
naddcnffo ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ( ∘f +o ↾ (𝑆 × 𝑆)):(𝑆 × 𝑆)–onto𝑆)

Proof of Theorem naddcnffo
Dummy variables 𝑓 𝑔 𝑧 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 naddcnff 42791 . 2 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ( ∘f +o ↾ (𝑆 × 𝑆)):(𝑆 × 𝑆)⟶𝑆)
2 simpr 484 . . . 4 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝑓𝑆) → 𝑓𝑆)
3 peano1 7894 . . . . . . . . 9 ∅ ∈ ω
4 fconst6g 6786 . . . . . . . . 9 (∅ ∈ ω → (𝑋 × {∅}):𝑋⟶ω)
53, 4mp1i 13 . . . . . . . 8 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑋 × {∅}):𝑋⟶ω)
6 simpl 482 . . . . . . . . 9 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → 𝑋 ∈ On)
73a1i 11 . . . . . . . . 9 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ∅ ∈ ω)
86, 7fczfsuppd 9410 . . . . . . . 8 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑋 × {∅}) finSupp ∅)
9 simpr 484 . . . . . . . . . 10 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → 𝑆 = dom (ω CNF 𝑋))
109eleq2d 2815 . . . . . . . . 9 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ((𝑋 × {∅}) ∈ 𝑆 ↔ (𝑋 × {∅}) ∈ dom (ω CNF 𝑋)))
11 eqid 2728 . . . . . . . . . 10 dom (ω CNF 𝑋) = dom (ω CNF 𝑋)
12 omelon 9670 . . . . . . . . . . 11 ω ∈ On
1312a1i 11 . . . . . . . . . 10 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ω ∈ On)
1411, 13, 6cantnfs 9690 . . . . . . . . 9 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ((𝑋 × {∅}) ∈ dom (ω CNF 𝑋) ↔ ((𝑋 × {∅}):𝑋⟶ω ∧ (𝑋 × {∅}) finSupp ∅)))
1510, 14bitrd 279 . . . . . . . 8 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ((𝑋 × {∅}) ∈ 𝑆 ↔ ((𝑋 × {∅}):𝑋⟶ω ∧ (𝑋 × {∅}) finSupp ∅)))
165, 8, 15mpbir2and 712 . . . . . . 7 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑋 × {∅}) ∈ 𝑆)
1716adantr 480 . . . . . 6 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝑓𝑆) → (𝑋 × {∅}) ∈ 𝑆)
18 simpl 482 . . . . . . . . . 10 ((𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆) → 𝑓𝑆)
1918adantl 481 . . . . . . . . 9 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) → 𝑓𝑆)
20 simpr 484 . . . . . . . . . 10 ((𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆) → (𝑋 × {∅}) ∈ 𝑆)
2120adantl 481 . . . . . . . . 9 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) → (𝑋 × {∅}) ∈ 𝑆)
2219, 21ovresd 7588 . . . . . . . 8 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) → (𝑓( ∘f +o ↾ (𝑆 × 𝑆))(𝑋 × {∅})) = (𝑓f +o (𝑋 × {∅})))
239eleq2d 2815 . . . . . . . . . . . . . . 15 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑓𝑆𝑓 ∈ dom (ω CNF 𝑋)))
2411, 13, 6cantnfs 9690 . . . . . . . . . . . . . . 15 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑓 ∈ dom (ω CNF 𝑋) ↔ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)))
2523, 24bitrd 279 . . . . . . . . . . . . . 14 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑓𝑆 ↔ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)))
2625biimpd 228 . . . . . . . . . . . . 13 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑓𝑆 → (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)))
27 simpl 482 . . . . . . . . . . . . 13 ((𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅) → 𝑓:𝑋⟶ω)
2818, 26, 27syl56 36 . . . . . . . . . . . 12 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ((𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆) → 𝑓:𝑋⟶ω))
2928imp 406 . . . . . . . . . . 11 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) → 𝑓:𝑋⟶ω)
3029ffnd 6723 . . . . . . . . . 10 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) → 𝑓 Fn 𝑋)
31 fnconstg 6785 . . . . . . . . . . 11 (∅ ∈ ω → (𝑋 × {∅}) Fn 𝑋)
323, 31mp1i 13 . . . . . . . . . 10 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) → (𝑋 × {∅}) Fn 𝑋)
336adantr 480 . . . . . . . . . 10 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) → 𝑋 ∈ On)
34 inidm 4219 . . . . . . . . . 10 (𝑋𝑋) = 𝑋
3530, 32, 33, 33, 34offn 7698 . . . . . . . . 9 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) → (𝑓f +o (𝑋 × {∅})) Fn 𝑋)
3630adantr 480 . . . . . . . . . . 11 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) ∧ 𝑥𝑋) → 𝑓 Fn 𝑋)
373, 31mp1i 13 . . . . . . . . . . 11 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) ∧ 𝑥𝑋) → (𝑋 × {∅}) Fn 𝑋)
38 simplll 774 . . . . . . . . . . 11 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) ∧ 𝑥𝑋) → 𝑋 ∈ On)
39 simpr 484 . . . . . . . . . . 11 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) ∧ 𝑥𝑋) → 𝑥𝑋)
40 fnfvof 7702 . . . . . . . . . . 11 (((𝑓 Fn 𝑋 ∧ (𝑋 × {∅}) Fn 𝑋) ∧ (𝑋 ∈ On ∧ 𝑥𝑋)) → ((𝑓f +o (𝑋 × {∅}))‘𝑥) = ((𝑓𝑥) +o ((𝑋 × {∅})‘𝑥)))
4136, 37, 38, 39, 40syl22anc 838 . . . . . . . . . 10 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) ∧ 𝑥𝑋) → ((𝑓f +o (𝑋 × {∅}))‘𝑥) = ((𝑓𝑥) +o ((𝑋 × {∅})‘𝑥)))
423a1i 11 . . . . . . . . . . . 12 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) ∧ 𝑥𝑋) → ∅ ∈ ω)
43 fvconst2g 7214 . . . . . . . . . . . 12 ((∅ ∈ ω ∧ 𝑥𝑋) → ((𝑋 × {∅})‘𝑥) = ∅)
4442, 39, 43syl2anc 583 . . . . . . . . . . 11 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) ∧ 𝑥𝑋) → ((𝑋 × {∅})‘𝑥) = ∅)
4544oveq2d 7436 . . . . . . . . . 10 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) ∧ 𝑥𝑋) → ((𝑓𝑥) +o ((𝑋 × {∅})‘𝑥)) = ((𝑓𝑥) +o ∅))
4629ffvelcdmda 7094 . . . . . . . . . . 11 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) ∧ 𝑥𝑋) → (𝑓𝑥) ∈ ω)
47 nnon 7876 . . . . . . . . . . 11 ((𝑓𝑥) ∈ ω → (𝑓𝑥) ∈ On)
48 oa0 8537 . . . . . . . . . . 11 ((𝑓𝑥) ∈ On → ((𝑓𝑥) +o ∅) = (𝑓𝑥))
4946, 47, 483syl 18 . . . . . . . . . 10 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) ∧ 𝑥𝑋) → ((𝑓𝑥) +o ∅) = (𝑓𝑥))
5041, 45, 493eqtrd 2772 . . . . . . . . 9 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) ∧ 𝑥𝑋) → ((𝑓f +o (𝑋 × {∅}))‘𝑥) = (𝑓𝑥))
5135, 30, 50eqfnfvd 7043 . . . . . . . 8 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) → (𝑓f +o (𝑋 × {∅})) = 𝑓)
5222, 51eqtr2d 2769 . . . . . . 7 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) → 𝑓 = (𝑓( ∘f +o ↾ (𝑆 × 𝑆))(𝑋 × {∅})))
5352expr 456 . . . . . 6 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝑓𝑆) → ((𝑋 × {∅}) ∈ 𝑆𝑓 = (𝑓( ∘f +o ↾ (𝑆 × 𝑆))(𝑋 × {∅}))))
5417, 53jcai 516 . . . . 5 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝑓𝑆) → ((𝑋 × {∅}) ∈ 𝑆𝑓 = (𝑓( ∘f +o ↾ (𝑆 × 𝑆))(𝑋 × {∅}))))
55 oveq2 7428 . . . . . 6 (𝑧 = (𝑋 × {∅}) → (𝑓( ∘f +o ↾ (𝑆 × 𝑆))𝑧) = (𝑓( ∘f +o ↾ (𝑆 × 𝑆))(𝑋 × {∅})))
5655rspceeqv 3631 . . . . 5 (((𝑋 × {∅}) ∈ 𝑆𝑓 = (𝑓( ∘f +o ↾ (𝑆 × 𝑆))(𝑋 × {∅}))) → ∃𝑧𝑆 𝑓 = (𝑓( ∘f +o ↾ (𝑆 × 𝑆))𝑧))
5754, 56syl 17 . . . 4 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝑓𝑆) → ∃𝑧𝑆 𝑓 = (𝑓( ∘f +o ↾ (𝑆 × 𝑆))𝑧))
58 oveq1 7427 . . . . . . 7 (𝑔 = 𝑓 → (𝑔( ∘f +o ↾ (𝑆 × 𝑆))𝑧) = (𝑓( ∘f +o ↾ (𝑆 × 𝑆))𝑧))
5958eqeq2d 2739 . . . . . 6 (𝑔 = 𝑓 → (𝑓 = (𝑔( ∘f +o ↾ (𝑆 × 𝑆))𝑧) ↔ 𝑓 = (𝑓( ∘f +o ↾ (𝑆 × 𝑆))𝑧)))
6059rexbidv 3175 . . . . 5 (𝑔 = 𝑓 → (∃𝑧𝑆 𝑓 = (𝑔( ∘f +o ↾ (𝑆 × 𝑆))𝑧) ↔ ∃𝑧𝑆 𝑓 = (𝑓( ∘f +o ↾ (𝑆 × 𝑆))𝑧)))
6160rspcev 3609 . . . 4 ((𝑓𝑆 ∧ ∃𝑧𝑆 𝑓 = (𝑓( ∘f +o ↾ (𝑆 × 𝑆))𝑧)) → ∃𝑔𝑆𝑧𝑆 𝑓 = (𝑔( ∘f +o ↾ (𝑆 × 𝑆))𝑧))
622, 57, 61syl2anc 583 . . 3 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝑓𝑆) → ∃𝑔𝑆𝑧𝑆 𝑓 = (𝑔( ∘f +o ↾ (𝑆 × 𝑆))𝑧))
6362ralrimiva 3143 . 2 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ∀𝑓𝑆𝑔𝑆𝑧𝑆 𝑓 = (𝑔( ∘f +o ↾ (𝑆 × 𝑆))𝑧))
64 foov 7595 . 2 (( ∘f +o ↾ (𝑆 × 𝑆)):(𝑆 × 𝑆)–onto𝑆 ↔ (( ∘f +o ↾ (𝑆 × 𝑆)):(𝑆 × 𝑆)⟶𝑆 ∧ ∀𝑓𝑆𝑔𝑆𝑧𝑆 𝑓 = (𝑔( ∘f +o ↾ (𝑆 × 𝑆))𝑧)))
651, 63, 64sylanbrc 582 1 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ( ∘f +o ↾ (𝑆 × 𝑆)):(𝑆 × 𝑆)–onto𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  wral 3058  wrex 3067  c0 4323  {csn 4629   class class class wbr 5148   × cxp 5676  dom cdm 5678  cres 5680  Oncon0 6369   Fn wfn 6543  wf 6544  ontowfo 6546  cfv 6548  (class class class)co 7420  f cof 7683  ωcom 7870   +o coa 8484   finSupp cfsupp 9386   CNF ccnf 9685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-inf2 9665
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-ov 7423  df-oprab 7424  df-mpo 7425  df-of 7685  df-om 7871  df-1st 7993  df-2nd 7994  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-seqom 8469  df-1o 8487  df-oadd 8491  df-map 8847  df-en 8965  df-fin 8968  df-fsupp 9387  df-cnf 9686
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator
OSZAR »