![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqfnfvd | Structured version Visualization version GIF version |
Description: Deduction for equality of functions. (Contributed by Mario Carneiro, 24-Jul-2014.) |
Ref | Expression |
---|---|
eqfnfvd.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
eqfnfvd.2 | ⊢ (𝜑 → 𝐺 Fn 𝐴) |
eqfnfvd.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐺‘𝑥)) |
Ref | Expression |
---|---|
eqfnfvd | ⊢ (𝜑 → 𝐹 = 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqfnfvd.3 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐺‘𝑥)) | |
2 | 1 | ralrimiva 3143 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)) |
3 | eqfnfvd.1 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
4 | eqfnfvd.2 | . . 3 ⊢ (𝜑 → 𝐺 Fn 𝐴) | |
5 | eqfnfv 7040 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) | |
6 | 3, 4, 5 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
7 | 2, 6 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹 = 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∀wral 3058 Fn wfn 6543 ‘cfv 6548 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-fv 6556 |
This theorem is referenced by: foeqcnvco 7309 f1eqcocnv 7310 f1eqcocnvOLD 7311 offveq 7709 tfrlem1 8396 updjudhcoinlf 9955 updjudhcoinrg 9956 ackbij2lem2 10263 ackbij2lem3 10264 fpwwe2lem7 10660 seqfeq2 14022 seqfeq 14024 seqfeq3 14049 ccatlid 14568 ccatrid 14569 ccatass 14570 ccatswrd 14650 swrdccat2 14651 pfxid 14666 ccatpfx 14683 pfxccat1 14684 swrdswrd 14687 cats1un 14703 swrdccatin1 14707 swrdccatin2 14711 pfxccatin12 14715 revccat 14748 revrev 14749 cshco 14819 swrdco 14820 seqshft 15064 seq1st 16541 xpsfeq 17544 yonedainv 18272 pwsco1mhm 18783 ghmquskerco 19234 f1otrspeq 19401 pmtrfinv 19415 symgtrinv 19426 frgpup3lem 19731 ablfac1eu 20029 zrinitorngc 20574 zrtermorngc 20575 zrtermoringc 20607 psgndiflemB 21531 frlmup1 21731 frlmup3 21733 frlmup4 21734 psrlidm 21904 psrridm 21905 psrass1 21906 subrgascl 22009 evlslem1 22027 psdmplcl 22085 psdvsca 22087 mavmulass 22450 upxp 23526 uptx 23528 cnextfres1 23971 ovolshftlem1 25437 volsup 25484 dvidlem 25843 dvrec 25886 dveq0 25932 dv11cn 25933 ftc1cn 25977 coemulc 26188 aannenlem1 26262 ulmuni 26327 ulmdv 26338 ostthlem1 27559 nvinvfval 30449 sspn 30545 kbass2 31926 xppreima2 32436 fdifsuppconst 32469 psgnfzto1stlem 32821 cycpmco2 32854 cyc3co2 32861 ply1gsumz 33265 indpreima 33644 esumcvg 33705 signstres 34207 hgt750lemb 34288 revpfxsfxrev 34725 subfacp1lem4 34793 cvmliftmolem2 34892 msubff1 35166 iprodefisumlem 35334 poimirlem8 37101 poimirlem13 37106 poimirlem14 37107 ftc1cnnc 37165 eqlkr3 38573 cdleme51finvN 40029 sticksstones11 41628 aks6d1c6lem4 41645 metakunt33 41689 ofun 41727 frlmvscadiccat 41746 evlsvvval 41796 fsuppind 41823 ismrcd2 42119 ofoafo 42785 ofoaid1 42787 ofoaid2 42788 ofoaass 42789 ofoacom 42790 naddcnffo 42793 naddcnfcom 42795 naddcnfid1 42796 naddcnfass 42798 rfovcnvf1od 43434 dssmapntrcls 43558 dvconstbi 43771 fsumsermpt 44967 icccncfext 45275 voliooicof 45384 etransclem35 45657 rrxsnicc 45688 ovolval4lem1 46037 fcores 46449 1arymaptf1 47715 2arymaptf1 47726 |
Copyright terms: Public domain | W3C validator |