Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signstres Structured version   Visualization version   GIF version

Theorem signstres 34207
Description: Restriction of a zero skipping sign to a subword. (Contributed by Thierry Arnoux, 11-Oct-2018.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
Assertion
Ref Expression
signstres ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → ((𝑇𝐹) ↾ (0..^𝑁)) = (𝑇‘(𝐹 ↾ (0..^𝑁))))
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝐹   𝑓,𝑊,𝑖,𝑛   𝑓,𝑁,𝑖,𝑛
Allowed substitution hints:   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝐹(𝑗,𝑎,𝑏)   𝑁(𝑗,𝑎,𝑏)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signstres
Dummy variables 𝑔 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 signsv.p . . . . . . . 8 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
2 signsv.w . . . . . . . 8 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
3 signsv.t . . . . . . . 8 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
4 signsv.v . . . . . . . 8 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
51, 2, 3, 4signstf 34198 . . . . . . 7 (𝐹 ∈ Word ℝ → (𝑇𝐹) ∈ Word ℝ)
6 wrdf 14501 . . . . . . 7 ((𝑇𝐹) ∈ Word ℝ → (𝑇𝐹):(0..^(♯‘(𝑇𝐹)))⟶ℝ)
7 ffn 6722 . . . . . . 7 ((𝑇𝐹):(0..^(♯‘(𝑇𝐹)))⟶ℝ → (𝑇𝐹) Fn (0..^(♯‘(𝑇𝐹))))
85, 6, 73syl 18 . . . . . 6 (𝐹 ∈ Word ℝ → (𝑇𝐹) Fn (0..^(♯‘(𝑇𝐹))))
91, 2, 3, 4signstlen 34199 . . . . . . . 8 (𝐹 ∈ Word ℝ → (♯‘(𝑇𝐹)) = (♯‘𝐹))
109oveq2d 7436 . . . . . . 7 (𝐹 ∈ Word ℝ → (0..^(♯‘(𝑇𝐹))) = (0..^(♯‘𝐹)))
1110fneq2d 6648 . . . . . 6 (𝐹 ∈ Word ℝ → ((𝑇𝐹) Fn (0..^(♯‘(𝑇𝐹))) ↔ (𝑇𝐹) Fn (0..^(♯‘𝐹))))
128, 11mpbid 231 . . . . 5 (𝐹 ∈ Word ℝ → (𝑇𝐹) Fn (0..^(♯‘𝐹)))
13 fnresin 32410 . . . . 5 ((𝑇𝐹) Fn (0..^(♯‘𝐹)) → ((𝑇𝐹) ↾ (0..^𝑁)) Fn ((0..^(♯‘𝐹)) ∩ (0..^𝑁)))
1412, 13syl 17 . . . 4 (𝐹 ∈ Word ℝ → ((𝑇𝐹) ↾ (0..^𝑁)) Fn ((0..^(♯‘𝐹)) ∩ (0..^𝑁)))
1514adantr 480 . . 3 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → ((𝑇𝐹) ↾ (0..^𝑁)) Fn ((0..^(♯‘𝐹)) ∩ (0..^𝑁)))
16 elfzuz3 13530 . . . . . 6 (𝑁 ∈ (0...(♯‘𝐹)) → (♯‘𝐹) ∈ (ℤ𝑁))
17 fzoss2 13692 . . . . . 6 ((♯‘𝐹) ∈ (ℤ𝑁) → (0..^𝑁) ⊆ (0..^(♯‘𝐹)))
1816, 17syl 17 . . . . 5 (𝑁 ∈ (0...(♯‘𝐹)) → (0..^𝑁) ⊆ (0..^(♯‘𝐹)))
1918adantl 481 . . . 4 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (0..^𝑁) ⊆ (0..^(♯‘𝐹)))
20 incom 4201 . . . . . 6 ((0..^𝑁) ∩ (0..^(♯‘𝐹))) = ((0..^(♯‘𝐹)) ∩ (0..^𝑁))
21 df-ss 3964 . . . . . . 7 ((0..^𝑁) ⊆ (0..^(♯‘𝐹)) ↔ ((0..^𝑁) ∩ (0..^(♯‘𝐹))) = (0..^𝑁))
2221biimpi 215 . . . . . 6 ((0..^𝑁) ⊆ (0..^(♯‘𝐹)) → ((0..^𝑁) ∩ (0..^(♯‘𝐹))) = (0..^𝑁))
2320, 22eqtr3id 2782 . . . . 5 ((0..^𝑁) ⊆ (0..^(♯‘𝐹)) → ((0..^(♯‘𝐹)) ∩ (0..^𝑁)) = (0..^𝑁))
2423fneq2d 6648 . . . 4 ((0..^𝑁) ⊆ (0..^(♯‘𝐹)) → (((𝑇𝐹) ↾ (0..^𝑁)) Fn ((0..^(♯‘𝐹)) ∩ (0..^𝑁)) ↔ ((𝑇𝐹) ↾ (0..^𝑁)) Fn (0..^𝑁)))
2519, 24syl 17 . . 3 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (((𝑇𝐹) ↾ (0..^𝑁)) Fn ((0..^(♯‘𝐹)) ∩ (0..^𝑁)) ↔ ((𝑇𝐹) ↾ (0..^𝑁)) Fn (0..^𝑁)))
2615, 25mpbid 231 . 2 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → ((𝑇𝐹) ↾ (0..^𝑁)) Fn (0..^𝑁))
27 wrdres 32660 . . . 4 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (𝐹 ↾ (0..^𝑁)) ∈ Word ℝ)
281, 2, 3, 4signstf 34198 . . . 4 ((𝐹 ↾ (0..^𝑁)) ∈ Word ℝ → (𝑇‘(𝐹 ↾ (0..^𝑁))) ∈ Word ℝ)
29 wrdf 14501 . . . 4 ((𝑇‘(𝐹 ↾ (0..^𝑁))) ∈ Word ℝ → (𝑇‘(𝐹 ↾ (0..^𝑁))):(0..^(♯‘(𝑇‘(𝐹 ↾ (0..^𝑁)))))⟶ℝ)
30 ffn 6722 . . . 4 ((𝑇‘(𝐹 ↾ (0..^𝑁))):(0..^(♯‘(𝑇‘(𝐹 ↾ (0..^𝑁)))))⟶ℝ → (𝑇‘(𝐹 ↾ (0..^𝑁))) Fn (0..^(♯‘(𝑇‘(𝐹 ↾ (0..^𝑁))))))
3127, 28, 29, 304syl 19 . . 3 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (𝑇‘(𝐹 ↾ (0..^𝑁))) Fn (0..^(♯‘(𝑇‘(𝐹 ↾ (0..^𝑁))))))
321, 2, 3, 4signstlen 34199 . . . . . . 7 ((𝐹 ↾ (0..^𝑁)) ∈ Word ℝ → (♯‘(𝑇‘(𝐹 ↾ (0..^𝑁)))) = (♯‘(𝐹 ↾ (0..^𝑁))))
3327, 32syl 17 . . . . . 6 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (♯‘(𝑇‘(𝐹 ↾ (0..^𝑁)))) = (♯‘(𝐹 ↾ (0..^𝑁))))
34 wrdfn 14510 . . . . . . . 8 (𝐹 ∈ Word ℝ → 𝐹 Fn (0..^(♯‘𝐹)))
35 fnssres 6678 . . . . . . . 8 ((𝐹 Fn (0..^(♯‘𝐹)) ∧ (0..^𝑁) ⊆ (0..^(♯‘𝐹))) → (𝐹 ↾ (0..^𝑁)) Fn (0..^𝑁))
3634, 18, 35syl2an 595 . . . . . . 7 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (𝐹 ↾ (0..^𝑁)) Fn (0..^𝑁))
37 hashfn 14366 . . . . . . 7 ((𝐹 ↾ (0..^𝑁)) Fn (0..^𝑁) → (♯‘(𝐹 ↾ (0..^𝑁))) = (♯‘(0..^𝑁)))
3836, 37syl 17 . . . . . 6 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (♯‘(𝐹 ↾ (0..^𝑁))) = (♯‘(0..^𝑁)))
39 elfznn0 13626 . . . . . . . 8 (𝑁 ∈ (0...(♯‘𝐹)) → 𝑁 ∈ ℕ0)
40 hashfzo0 14421 . . . . . . . 8 (𝑁 ∈ ℕ0 → (♯‘(0..^𝑁)) = 𝑁)
4139, 40syl 17 . . . . . . 7 (𝑁 ∈ (0...(♯‘𝐹)) → (♯‘(0..^𝑁)) = 𝑁)
4241adantl 481 . . . . . 6 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (♯‘(0..^𝑁)) = 𝑁)
4333, 38, 423eqtrd 2772 . . . . 5 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (♯‘(𝑇‘(𝐹 ↾ (0..^𝑁)))) = 𝑁)
4443oveq2d 7436 . . . 4 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (0..^(♯‘(𝑇‘(𝐹 ↾ (0..^𝑁))))) = (0..^𝑁))
4544fneq2d 6648 . . 3 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → ((𝑇‘(𝐹 ↾ (0..^𝑁))) Fn (0..^(♯‘(𝑇‘(𝐹 ↾ (0..^𝑁))))) ↔ (𝑇‘(𝐹 ↾ (0..^𝑁))) Fn (0..^𝑁)))
4631, 45mpbid 231 . 2 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (𝑇‘(𝐹 ↾ (0..^𝑁))) Fn (0..^𝑁))
47 fvres 6916 . . . . 5 (𝑚 ∈ (0..^𝑁) → (((𝑇𝐹) ↾ (0..^𝑁))‘𝑚) = ((𝑇𝐹)‘𝑚))
4847ad3antlr 730 . . . 4 (((((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) ∧ 𝑚 ∈ (0..^𝑁)) ∧ 𝑔 ∈ Word ℝ) ∧ 𝐹 = ((𝐹 ↾ (0..^𝑁)) ++ 𝑔)) → (((𝑇𝐹) ↾ (0..^𝑁))‘𝑚) = ((𝑇𝐹)‘𝑚))
49 simpr 484 . . . . . 6 (((((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) ∧ 𝑚 ∈ (0..^𝑁)) ∧ 𝑔 ∈ Word ℝ) ∧ 𝐹 = ((𝐹 ↾ (0..^𝑁)) ++ 𝑔)) → 𝐹 = ((𝐹 ↾ (0..^𝑁)) ++ 𝑔))
5049fveq2d 6901 . . . . 5 (((((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) ∧ 𝑚 ∈ (0..^𝑁)) ∧ 𝑔 ∈ Word ℝ) ∧ 𝐹 = ((𝐹 ↾ (0..^𝑁)) ++ 𝑔)) → (𝑇𝐹) = (𝑇‘((𝐹 ↾ (0..^𝑁)) ++ 𝑔)))
5150fveq1d 6899 . . . 4 (((((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) ∧ 𝑚 ∈ (0..^𝑁)) ∧ 𝑔 ∈ Word ℝ) ∧ 𝐹 = ((𝐹 ↾ (0..^𝑁)) ++ 𝑔)) → ((𝑇𝐹)‘𝑚) = ((𝑇‘((𝐹 ↾ (0..^𝑁)) ++ 𝑔))‘𝑚))
5227ad3antrrr 729 . . . . 5 (((((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) ∧ 𝑚 ∈ (0..^𝑁)) ∧ 𝑔 ∈ Word ℝ) ∧ 𝐹 = ((𝐹 ↾ (0..^𝑁)) ++ 𝑔)) → (𝐹 ↾ (0..^𝑁)) ∈ Word ℝ)
53 simplr 768 . . . . 5 (((((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) ∧ 𝑚 ∈ (0..^𝑁)) ∧ 𝑔 ∈ Word ℝ) ∧ 𝐹 = ((𝐹 ↾ (0..^𝑁)) ++ 𝑔)) → 𝑔 ∈ Word ℝ)
5438, 42eqtrd 2768 . . . . . . . . 9 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (♯‘(𝐹 ↾ (0..^𝑁))) = 𝑁)
5554oveq2d 7436 . . . . . . . 8 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (0..^(♯‘(𝐹 ↾ (0..^𝑁)))) = (0..^𝑁))
5655eleq2d 2815 . . . . . . 7 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (𝑚 ∈ (0..^(♯‘(𝐹 ↾ (0..^𝑁)))) ↔ 𝑚 ∈ (0..^𝑁)))
5756biimpar 477 . . . . . 6 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) ∧ 𝑚 ∈ (0..^𝑁)) → 𝑚 ∈ (0..^(♯‘(𝐹 ↾ (0..^𝑁)))))
5857ad2antrr 725 . . . . 5 (((((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) ∧ 𝑚 ∈ (0..^𝑁)) ∧ 𝑔 ∈ Word ℝ) ∧ 𝐹 = ((𝐹 ↾ (0..^𝑁)) ++ 𝑔)) → 𝑚 ∈ (0..^(♯‘(𝐹 ↾ (0..^𝑁)))))
591, 2, 3, 4signstfvc 34206 . . . . 5 (((𝐹 ↾ (0..^𝑁)) ∈ Word ℝ ∧ 𝑔 ∈ Word ℝ ∧ 𝑚 ∈ (0..^(♯‘(𝐹 ↾ (0..^𝑁))))) → ((𝑇‘((𝐹 ↾ (0..^𝑁)) ++ 𝑔))‘𝑚) = ((𝑇‘(𝐹 ↾ (0..^𝑁)))‘𝑚))
6052, 53, 58, 59syl3anc 1369 . . . 4 (((((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) ∧ 𝑚 ∈ (0..^𝑁)) ∧ 𝑔 ∈ Word ℝ) ∧ 𝐹 = ((𝐹 ↾ (0..^𝑁)) ++ 𝑔)) → ((𝑇‘((𝐹 ↾ (0..^𝑁)) ++ 𝑔))‘𝑚) = ((𝑇‘(𝐹 ↾ (0..^𝑁)))‘𝑚))
6148, 51, 603eqtrd 2772 . . 3 (((((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) ∧ 𝑚 ∈ (0..^𝑁)) ∧ 𝑔 ∈ Word ℝ) ∧ 𝐹 = ((𝐹 ↾ (0..^𝑁)) ++ 𝑔)) → (((𝑇𝐹) ↾ (0..^𝑁))‘𝑚) = ((𝑇‘(𝐹 ↾ (0..^𝑁)))‘𝑚))
62 wrdsplex 32661 . . . 4 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → ∃𝑔 ∈ Word ℝ𝐹 = ((𝐹 ↾ (0..^𝑁)) ++ 𝑔))
6362adantr 480 . . 3 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) ∧ 𝑚 ∈ (0..^𝑁)) → ∃𝑔 ∈ Word ℝ𝐹 = ((𝐹 ↾ (0..^𝑁)) ++ 𝑔))
6461, 63r19.29a 3159 . 2 (((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) ∧ 𝑚 ∈ (0..^𝑁)) → (((𝑇𝐹) ↾ (0..^𝑁))‘𝑚) = ((𝑇‘(𝐹 ↾ (0..^𝑁)))‘𝑚))
6526, 46, 64eqfnfvd 7043 1 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0...(♯‘𝐹))) → ((𝑇𝐹) ↾ (0..^𝑁)) = (𝑇‘(𝐹 ↾ (0..^𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  wne 2937  wrex 3067  cin 3946  wss 3947  ifcif 4529  {cpr 4631  {ctp 4633  cop 4635  cmpt 5231  cres 5680   Fn wfn 6543  wf 6544  cfv 6548  (class class class)co 7420  cmpo 7422  cr 11137  0cc0 11138  1c1 11139  cmin 11474  -cneg 11475  0cn0 12502  cuz 12852  ...cfz 13516  ..^cfzo 13659  chash 14321  Word cword 14496   ++ cconcat 14552  sgncsgn 15065  Σcsu 15664  ndxcnx 17161  Basecbs 17179  +gcplusg 17232   Σg cgsu 17421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-1o 8486  df-er 8724  df-en 8964  df-dom 8965  df-sdom 8966  df-fin 8967  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-2 12305  df-n0 12503  df-xnn0 12575  df-z 12589  df-uz 12853  df-fz 13517  df-fzo 13660  df-seq 13999  df-hash 14322  df-word 14497  df-lsw 14545  df-concat 14553  df-s1 14578  df-substr 14623  df-pfx 14653  df-sgn 15066  df-struct 17115  df-slot 17150  df-ndx 17162  df-base 17180  df-plusg 17245  df-0g 17422  df-gsum 17423  df-mgm 18599  df-sgrp 18678  df-mnd 18694
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator
OSZAR »