![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > signstfveq0a | Structured version Visualization version GIF version |
Description: Lemma for signstfveq0 34209. (Contributed by Thierry Arnoux, 11-Oct-2018.) |
Ref | Expression |
---|---|
signsv.p | ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) |
signsv.w | ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} |
signsv.t | ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) |
signsv.v | ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) |
signstfveq0.1 | ⊢ 𝑁 = (♯‘𝐹) |
Ref | Expression |
---|---|
signstfveq0a | ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝑁 ∈ (ℤ≥‘2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 766 | . . . . 5 ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝐹 ∈ (Word ℝ ∖ {∅})) | |
2 | 1 | eldifad 3959 | . . . 4 ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝐹 ∈ Word ℝ) |
3 | signstfveq0.1 | . . . . 5 ⊢ 𝑁 = (♯‘𝐹) | |
4 | lencl 14516 | . . . . 5 ⊢ (𝐹 ∈ Word ℝ → (♯‘𝐹) ∈ ℕ0) | |
5 | 3, 4 | eqeltrid 2833 | . . . 4 ⊢ (𝐹 ∈ Word ℝ → 𝑁 ∈ ℕ0) |
6 | 2, 5 | syl 17 | . . 3 ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝑁 ∈ ℕ0) |
7 | eldifsn 4791 | . . . . 5 ⊢ (𝐹 ∈ (Word ℝ ∖ {∅}) ↔ (𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅)) | |
8 | 1, 7 | sylib 217 | . . . 4 ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅)) |
9 | hasheq0 14355 | . . . . . . 7 ⊢ (𝐹 ∈ Word ℝ → ((♯‘𝐹) = 0 ↔ 𝐹 = ∅)) | |
10 | 9 | necon3bid 2982 | . . . . . 6 ⊢ (𝐹 ∈ Word ℝ → ((♯‘𝐹) ≠ 0 ↔ 𝐹 ≠ ∅)) |
11 | 10 | biimpar 477 | . . . . 5 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅) → (♯‘𝐹) ≠ 0) |
12 | 3 | neeq1i 3002 | . . . . 5 ⊢ (𝑁 ≠ 0 ↔ (♯‘𝐹) ≠ 0) |
13 | 11, 12 | sylibr 233 | . . . 4 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅) → 𝑁 ≠ 0) |
14 | 8, 13 | syl 17 | . . 3 ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝑁 ≠ 0) |
15 | elnnne0 12517 | . . 3 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0)) | |
16 | 6, 14, 15 | sylanbrc 582 | . 2 ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝑁 ∈ ℕ) |
17 | simplr 768 | . . . . 5 ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝐹‘0) ≠ 0) | |
18 | simpr 484 | . . . . 5 ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝐹‘(𝑁 − 1)) = 0) | |
19 | 17, 18 | neeqtrrd 3012 | . . . 4 ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝐹‘0) ≠ (𝐹‘(𝑁 − 1))) |
20 | 19 | necomd 2993 | . . 3 ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝐹‘(𝑁 − 1)) ≠ (𝐹‘0)) |
21 | oveq1 7427 | . . . . . 6 ⊢ (𝑁 = 1 → (𝑁 − 1) = (1 − 1)) | |
22 | 1m1e0 12315 | . . . . . 6 ⊢ (1 − 1) = 0 | |
23 | 21, 22 | eqtrdi 2784 | . . . . 5 ⊢ (𝑁 = 1 → (𝑁 − 1) = 0) |
24 | 23 | fveq2d 6901 | . . . 4 ⊢ (𝑁 = 1 → (𝐹‘(𝑁 − 1)) = (𝐹‘0)) |
25 | 24 | necon3i 2970 | . . 3 ⊢ ((𝐹‘(𝑁 − 1)) ≠ (𝐹‘0) → 𝑁 ≠ 1) |
26 | 20, 25 | syl 17 | . 2 ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝑁 ≠ 1) |
27 | eluz2b3 12937 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘2) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1)) | |
28 | 16, 26, 27 | sylanbrc 582 | 1 ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝑁 ∈ (ℤ≥‘2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ≠ wne 2937 ∖ cdif 3944 ∅c0 4323 ifcif 4529 {csn 4629 {cpr 4631 {ctp 4633 〈cop 4635 ↦ cmpt 5231 ‘cfv 6548 (class class class)co 7420 ∈ cmpo 7422 ℝcr 11138 0cc0 11139 1c1 11140 − cmin 11475 -cneg 11476 ℕcn 12243 2c2 12298 ℕ0cn0 12503 ℤ≥cuz 12853 ...cfz 13517 ..^cfzo 13660 ♯chash 14322 Word cword 14497 sgncsgn 15066 Σcsu 15665 ndxcnx 17162 Basecbs 17180 +gcplusg 17233 Σg cgsu 17422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-card 9963 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-nn 12244 df-2 12306 df-n0 12504 df-z 12590 df-uz 12854 df-fz 13518 df-fzo 13661 df-hash 14323 df-word 14498 |
This theorem is referenced by: signstfveq0 34209 |
Copyright terms: Public domain | W3C validator |