Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrxsnicc Structured version   Visualization version   GIF version

Theorem rrxsnicc 45682
Description: A multidimensional singleton expressed as a multidimensional closed interval. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypothesis
Ref Expression
rrxsnicc.1 (𝜑𝐴 ∈ (ℝ ↑m 𝑋))
Assertion
Ref Expression
rrxsnicc (𝜑X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)) = {𝐴})
Distinct variable groups:   𝐴,𝑘   𝑘,𝑋   𝜑,𝑘

Proof of Theorem rrxsnicc
Dummy variables 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ixpfn 8915 . . . . . 6 (𝑓X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)) → 𝑓 Fn 𝑋)
21adantl 481 . . . . 5 ((𝜑𝑓X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘))) → 𝑓 Fn 𝑋)
3 rrxsnicc.1 . . . . . . 7 (𝜑𝐴 ∈ (ℝ ↑m 𝑋))
4 elmapfn 8877 . . . . . . 7 (𝐴 ∈ (ℝ ↑m 𝑋) → 𝐴 Fn 𝑋)
53, 4syl 17 . . . . . 6 (𝜑𝐴 Fn 𝑋)
65adantr 480 . . . . 5 ((𝜑𝑓X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘))) → 𝐴 Fn 𝑋)
7 simpll 766 . . . . . 6 (((𝜑𝑓X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘))) ∧ 𝑗𝑋) → 𝜑)
8 fveq2 6891 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝐴𝑘) = (𝐴𝑗))
98, 8oveq12d 7432 . . . . . . . . . 10 (𝑘 = 𝑗 → ((𝐴𝑘)[,](𝐴𝑘)) = ((𝐴𝑗)[,](𝐴𝑗)))
109cbvixpv 8927 . . . . . . . . 9 X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)) = X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗))
1110eleq2i 2821 . . . . . . . 8 (𝑓X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)) ↔ 𝑓X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗)))
1211biimpi 215 . . . . . . 7 (𝑓X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)) → 𝑓X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗)))
1312ad2antlr 726 . . . . . 6 (((𝜑𝑓X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘))) ∧ 𝑗𝑋) → 𝑓X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗)))
14 simpr 484 . . . . . 6 (((𝜑𝑓X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘))) ∧ 𝑗𝑋) → 𝑗𝑋)
15 elmapi 8861 . . . . . . . . . . . . 13 (𝐴 ∈ (ℝ ↑m 𝑋) → 𝐴:𝑋⟶ℝ)
163, 15syl 17 . . . . . . . . . . . 12 (𝜑𝐴:𝑋⟶ℝ)
1716ffvelcdmda 7088 . . . . . . . . . . 11 ((𝜑𝑗𝑋) → (𝐴𝑗) ∈ ℝ)
1817adantlr 714 . . . . . . . . . 10 (((𝜑𝑓X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗))) ∧ 𝑗𝑋) → (𝐴𝑗) ∈ ℝ)
1918, 18iccssred 13437 . . . . . . . . 9 (((𝜑𝑓X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗))) ∧ 𝑗𝑋) → ((𝐴𝑗)[,](𝐴𝑗)) ⊆ ℝ)
20 fvixp2 44566 . . . . . . . . . 10 ((𝑓X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗)) ∧ 𝑗𝑋) → (𝑓𝑗) ∈ ((𝐴𝑗)[,](𝐴𝑗)))
2120adantll 713 . . . . . . . . 9 (((𝜑𝑓X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗))) ∧ 𝑗𝑋) → (𝑓𝑗) ∈ ((𝐴𝑗)[,](𝐴𝑗)))
2219, 21sseldd 3979 . . . . . . . 8 (((𝜑𝑓X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗))) ∧ 𝑗𝑋) → (𝑓𝑗) ∈ ℝ)
2322rexrd 11288 . . . . . . 7 (((𝜑𝑓X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗))) ∧ 𝑗𝑋) → (𝑓𝑗) ∈ ℝ*)
2418rexrd 11288 . . . . . . 7 (((𝜑𝑓X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗))) ∧ 𝑗𝑋) → (𝐴𝑗) ∈ ℝ*)
25 iccleub 13405 . . . . . . . 8 (((𝐴𝑗) ∈ ℝ* ∧ (𝐴𝑗) ∈ ℝ* ∧ (𝑓𝑗) ∈ ((𝐴𝑗)[,](𝐴𝑗))) → (𝑓𝑗) ≤ (𝐴𝑗))
2624, 24, 21, 25syl3anc 1369 . . . . . . 7 (((𝜑𝑓X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗))) ∧ 𝑗𝑋) → (𝑓𝑗) ≤ (𝐴𝑗))
27 iccgelb 13406 . . . . . . . 8 (((𝐴𝑗) ∈ ℝ* ∧ (𝐴𝑗) ∈ ℝ* ∧ (𝑓𝑗) ∈ ((𝐴𝑗)[,](𝐴𝑗))) → (𝐴𝑗) ≤ (𝑓𝑗))
2824, 24, 21, 27syl3anc 1369 . . . . . . 7 (((𝜑𝑓X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗))) ∧ 𝑗𝑋) → (𝐴𝑗) ≤ (𝑓𝑗))
2923, 24, 26, 28xrletrid 13160 . . . . . 6 (((𝜑𝑓X𝑗𝑋 ((𝐴𝑗)[,](𝐴𝑗))) ∧ 𝑗𝑋) → (𝑓𝑗) = (𝐴𝑗))
307, 13, 14, 29syl21anc 837 . . . . 5 (((𝜑𝑓X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘))) ∧ 𝑗𝑋) → (𝑓𝑗) = (𝐴𝑗))
312, 6, 30eqfnfvd 7037 . . . 4 ((𝜑𝑓X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘))) → 𝑓 = 𝐴)
32 velsn 4640 . . . . . 6 (𝑓 ∈ {𝐴} ↔ 𝑓 = 𝐴)
3332bicomi 223 . . . . 5 (𝑓 = 𝐴𝑓 ∈ {𝐴})
3433biimpi 215 . . . 4 (𝑓 = 𝐴𝑓 ∈ {𝐴})
3531, 34syl 17 . . 3 ((𝜑𝑓X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘))) → 𝑓 ∈ {𝐴})
3635ssd 44440 . 2 (𝜑X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)) ⊆ {𝐴})
373elexd 3491 . . . . 5 (𝜑𝐴 ∈ V)
3816ffvelcdmda 7088 . . . . . . 7 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
3938leidd 11804 . . . . . . 7 ((𝜑𝑘𝑋) → (𝐴𝑘) ≤ (𝐴𝑘))
4038, 38, 38, 39, 39eliccd 44883 . . . . . 6 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ((𝐴𝑘)[,](𝐴𝑘)))
4140ralrimiva 3142 . . . . 5 (𝜑 → ∀𝑘𝑋 (𝐴𝑘) ∈ ((𝐴𝑘)[,](𝐴𝑘)))
4237, 5, 413jca 1126 . . . 4 (𝜑 → (𝐴 ∈ V ∧ 𝐴 Fn 𝑋 ∧ ∀𝑘𝑋 (𝐴𝑘) ∈ ((𝐴𝑘)[,](𝐴𝑘))))
43 elixp2 8913 . . . 4 (𝐴X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)) ↔ (𝐴 ∈ V ∧ 𝐴 Fn 𝑋 ∧ ∀𝑘𝑋 (𝐴𝑘) ∈ ((𝐴𝑘)[,](𝐴𝑘))))
4442, 43sylibr 233 . . 3 (𝜑𝐴X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)))
45 snssg 4783 . . . 4 (𝐴 ∈ (ℝ ↑m 𝑋) → (𝐴X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)) ↔ {𝐴} ⊆ X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘))))
463, 45syl 17 . . 3 (𝜑 → (𝐴X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)) ↔ {𝐴} ⊆ X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘))))
4744, 46mpbid 231 . 2 (𝜑 → {𝐴} ⊆ X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)))
4836, 47eqssd 3995 1 (𝜑X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)) = {𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  wral 3057  Vcvv 3470  wss 3945  {csn 4624   class class class wbr 5142   Fn wfn 6537  wf 6538  cfv 6542  (class class class)co 7414  m cmap 8838  Xcixp 8909  cr 11131  *cxr 11271  cle 11273  [,]cicc 13353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-pre-lttri 11206  ax-pre-lttrn 11207
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-po 5584  df-so 5585  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7987  df-2nd 7988  df-er 8718  df-map 8840  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-icc 13357
This theorem is referenced by:  snvonmbl  46068  vonsn  46073
  Copyright terms: Public domain W3C validator
OSZAR »