Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xppreima2 Structured version   Visualization version   GIF version

Theorem xppreima2 32458
Description: The preimage of a Cartesian product is the intersection of the preimages of each component function. (Contributed by Thierry Arnoux, 7-Jun-2017.)
Hypotheses
Ref Expression
xppreima2.1 (𝜑𝐹:𝐴𝐵)
xppreima2.2 (𝜑𝐺:𝐴𝐶)
xppreima2.3 𝐻 = (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)
Assertion
Ref Expression
xppreima2 (𝜑 → (𝐻 “ (𝑌 × 𝑍)) = ((𝐹𝑌) ∩ (𝐺𝑍)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹   𝑥,𝐺   𝑥,𝐻   𝜑,𝑥
Allowed substitution hints:   𝑌(𝑥)   𝑍(𝑥)

Proof of Theorem xppreima2
StepHypRef Expression
1 xppreima2.3 . . . 4 𝐻 = (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)
21funmpt2 6597 . . 3 Fun 𝐻
3 xppreima2.1 . . . . . . . 8 (𝜑𝐹:𝐴𝐵)
43ffvelcdmda 7099 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
5 xppreima2.2 . . . . . . . 8 (𝜑𝐺:𝐴𝐶)
65ffvelcdmda 7099 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐺𝑥) ∈ 𝐶)
7 opelxp 5718 . . . . . . 7 (⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝐵 × 𝐶) ↔ ((𝐹𝑥) ∈ 𝐵 ∧ (𝐺𝑥) ∈ 𝐶))
84, 6, 7sylanbrc 581 . . . . . 6 ((𝜑𝑥𝐴) → ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝐵 × 𝐶))
98, 1fmptd 7129 . . . . 5 (𝜑𝐻:𝐴⟶(𝐵 × 𝐶))
109frnd 6735 . . . 4 (𝜑 → ran 𝐻 ⊆ (𝐵 × 𝐶))
11 xpss 5698 . . . 4 (𝐵 × 𝐶) ⊆ (V × V)
1210, 11sstrdi 3994 . . 3 (𝜑 → ran 𝐻 ⊆ (V × V))
13 xppreima 32453 . . 3 ((Fun 𝐻 ∧ ran 𝐻 ⊆ (V × V)) → (𝐻 “ (𝑌 × 𝑍)) = (((1st𝐻) “ 𝑌) ∩ ((2nd𝐻) “ 𝑍)))
142, 12, 13sylancr 585 . 2 (𝜑 → (𝐻 “ (𝑌 × 𝑍)) = (((1st𝐻) “ 𝑌) ∩ ((2nd𝐻) “ 𝑍)))
15 fo1st 8019 . . . . . . . . 9 1st :V–onto→V
16 fofn 6818 . . . . . . . . 9 (1st :V–onto→V → 1st Fn V)
1715, 16ax-mp 5 . . . . . . . 8 1st Fn V
18 opex 5470 . . . . . . . . 9 ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ V
1918, 1fnmpti 6703 . . . . . . . 8 𝐻 Fn 𝐴
20 ssv 4006 . . . . . . . 8 ran 𝐻 ⊆ V
21 fnco 6677 . . . . . . . 8 ((1st Fn V ∧ 𝐻 Fn 𝐴 ∧ ran 𝐻 ⊆ V) → (1st𝐻) Fn 𝐴)
2217, 19, 20, 21mp3an 1457 . . . . . . 7 (1st𝐻) Fn 𝐴
2322a1i 11 . . . . . 6 (𝜑 → (1st𝐻) Fn 𝐴)
243ffnd 6728 . . . . . 6 (𝜑𝐹 Fn 𝐴)
252a1i 11 . . . . . . . . . 10 ((𝜑𝑥𝐴) → Fun 𝐻)
2612adantr 479 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ran 𝐻 ⊆ (V × V))
27 simpr 483 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝑥𝐴)
2818, 1dmmpti 6704 . . . . . . . . . . 11 dom 𝐻 = 𝐴
2927, 28eleqtrrdi 2840 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝑥 ∈ dom 𝐻)
30 opfv 32452 . . . . . . . . . 10 (((Fun 𝐻 ∧ ran 𝐻 ⊆ (V × V)) ∧ 𝑥 ∈ dom 𝐻) → (𝐻𝑥) = ⟨((1st𝐻)‘𝑥), ((2nd𝐻)‘𝑥)⟩)
3125, 26, 29, 30syl21anc 836 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝐻𝑥) = ⟨((1st𝐻)‘𝑥), ((2nd𝐻)‘𝑥)⟩)
321fvmpt2 7021 . . . . . . . . . 10 ((𝑥𝐴 ∧ ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝐵 × 𝐶)) → (𝐻𝑥) = ⟨(𝐹𝑥), (𝐺𝑥)⟩)
3327, 8, 32syl2anc 582 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝐻𝑥) = ⟨(𝐹𝑥), (𝐺𝑥)⟩)
3431, 33eqtr3d 2770 . . . . . . . 8 ((𝜑𝑥𝐴) → ⟨((1st𝐻)‘𝑥), ((2nd𝐻)‘𝑥)⟩ = ⟨(𝐹𝑥), (𝐺𝑥)⟩)
35 fvex 6915 . . . . . . . . 9 ((1st𝐻)‘𝑥) ∈ V
36 fvex 6915 . . . . . . . . 9 ((2nd𝐻)‘𝑥) ∈ V
3735, 36opth 5482 . . . . . . . 8 (⟨((1st𝐻)‘𝑥), ((2nd𝐻)‘𝑥)⟩ = ⟨(𝐹𝑥), (𝐺𝑥)⟩ ↔ (((1st𝐻)‘𝑥) = (𝐹𝑥) ∧ ((2nd𝐻)‘𝑥) = (𝐺𝑥)))
3834, 37sylib 217 . . . . . . 7 ((𝜑𝑥𝐴) → (((1st𝐻)‘𝑥) = (𝐹𝑥) ∧ ((2nd𝐻)‘𝑥) = (𝐺𝑥)))
3938simpld 493 . . . . . 6 ((𝜑𝑥𝐴) → ((1st𝐻)‘𝑥) = (𝐹𝑥))
4023, 24, 39eqfnfvd 7048 . . . . 5 (𝜑 → (1st𝐻) = 𝐹)
4140cnveqd 5882 . . . 4 (𝜑(1st𝐻) = 𝐹)
4241imaeq1d 6067 . . 3 (𝜑 → ((1st𝐻) “ 𝑌) = (𝐹𝑌))
43 fo2nd 8020 . . . . . . . . 9 2nd :V–onto→V
44 fofn 6818 . . . . . . . . 9 (2nd :V–onto→V → 2nd Fn V)
4543, 44ax-mp 5 . . . . . . . 8 2nd Fn V
46 fnco 6677 . . . . . . . 8 ((2nd Fn V ∧ 𝐻 Fn 𝐴 ∧ ran 𝐻 ⊆ V) → (2nd𝐻) Fn 𝐴)
4745, 19, 20, 46mp3an 1457 . . . . . . 7 (2nd𝐻) Fn 𝐴
4847a1i 11 . . . . . 6 (𝜑 → (2nd𝐻) Fn 𝐴)
495ffnd 6728 . . . . . 6 (𝜑𝐺 Fn 𝐴)
5038simprd 494 . . . . . 6 ((𝜑𝑥𝐴) → ((2nd𝐻)‘𝑥) = (𝐺𝑥))
5148, 49, 50eqfnfvd 7048 . . . . 5 (𝜑 → (2nd𝐻) = 𝐺)
5251cnveqd 5882 . . . 4 (𝜑(2nd𝐻) = 𝐺)
5352imaeq1d 6067 . . 3 (𝜑 → ((2nd𝐻) “ 𝑍) = (𝐺𝑍))
5442, 53ineq12d 4215 . 2 (𝜑 → (((1st𝐻) “ 𝑌) ∩ ((2nd𝐻) “ 𝑍)) = ((𝐹𝑌) ∩ (𝐺𝑍)))
5514, 54eqtrd 2768 1 (𝜑 → (𝐻 “ (𝑌 × 𝑍)) = ((𝐹𝑌) ∩ (𝐺𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  Vcvv 3473  cin 3948  wss 3949  cop 4638  cmpt 5235   × cxp 5680  ccnv 5681  dom cdm 5682  ran crn 5683  cima 5685  ccom 5686  Fun wfun 6547   Fn wfn 6548  wf 6549  ontowfo 6551  cfv 6553  1st c1st 7997  2nd c2nd 7998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-fo 6559  df-fv 6561  df-1st 7999  df-2nd 8000
This theorem is referenced by:  mbfmco2  33918
  Copyright terms: Public domain W3C validator
OSZAR »