MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ncoprmgcdne1b Structured version   Visualization version   GIF version

Theorem ncoprmgcdne1b 16621
Description: Two positive integers are not coprime, i.e. there is an integer greater than 1 which divides both integers, iff their greatest common divisor is not 1. See prmdvdsncoprmbd 16699 for a version where the existential quantifier is restricted to primes. (Contributed by AV, 9-Aug-2020.)
Assertion
Ref Expression
ncoprmgcdne1b ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵) ↔ (𝐴 gcd 𝐵) ≠ 1))
Distinct variable groups:   𝐴,𝑖   𝐵,𝑖

Proof of Theorem ncoprmgcdne1b
StepHypRef Expression
1 eluz2nn 12899 . . . . . 6 (𝑖 ∈ (ℤ‘2) → 𝑖 ∈ ℕ)
21adantr 480 . . . . 5 ((𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵)) → 𝑖 ∈ ℕ)
3 eluz2b3 12937 . . . . . . 7 (𝑖 ∈ (ℤ‘2) ↔ (𝑖 ∈ ℕ ∧ 𝑖 ≠ 1))
4 neneq 2943 . . . . . . 7 (𝑖 ≠ 1 → ¬ 𝑖 = 1)
53, 4simplbiim 504 . . . . . 6 (𝑖 ∈ (ℤ‘2) → ¬ 𝑖 = 1)
65anim1ci 615 . . . . 5 ((𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵)) → ((𝑖𝐴𝑖𝐵) ∧ ¬ 𝑖 = 1))
72, 6jca 511 . . . 4 ((𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵)) → (𝑖 ∈ ℕ ∧ ((𝑖𝐴𝑖𝐵) ∧ ¬ 𝑖 = 1)))
8 neqne 2945 . . . . . . . . . . . 12 𝑖 = 1 → 𝑖 ≠ 1)
98anim1ci 615 . . . . . . . . . . 11 ((¬ 𝑖 = 1 ∧ 𝑖 ∈ ℕ) → (𝑖 ∈ ℕ ∧ 𝑖 ≠ 1))
109, 3sylibr 233 . . . . . . . . . 10 ((¬ 𝑖 = 1 ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ (ℤ‘2))
1110ex 412 . . . . . . . . 9 𝑖 = 1 → (𝑖 ∈ ℕ → 𝑖 ∈ (ℤ‘2)))
1211adantl 481 . . . . . . . 8 (((𝑖𝐴𝑖𝐵) ∧ ¬ 𝑖 = 1) → (𝑖 ∈ ℕ → 𝑖 ∈ (ℤ‘2)))
1312impcom 407 . . . . . . 7 ((𝑖 ∈ ℕ ∧ ((𝑖𝐴𝑖𝐵) ∧ ¬ 𝑖 = 1)) → 𝑖 ∈ (ℤ‘2))
1413adantl 481 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝑖 ∈ ℕ ∧ ((𝑖𝐴𝑖𝐵) ∧ ¬ 𝑖 = 1))) → 𝑖 ∈ (ℤ‘2))
15 simprrl 780 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝑖 ∈ ℕ ∧ ((𝑖𝐴𝑖𝐵) ∧ ¬ 𝑖 = 1))) → (𝑖𝐴𝑖𝐵))
1614, 15jca 511 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝑖 ∈ ℕ ∧ ((𝑖𝐴𝑖𝐵) ∧ ¬ 𝑖 = 1))) → (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵)))
1716ex 412 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝑖 ∈ ℕ ∧ ((𝑖𝐴𝑖𝐵) ∧ ¬ 𝑖 = 1)) → (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))))
187, 17impbid2 225 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵)) ↔ (𝑖 ∈ ℕ ∧ ((𝑖𝐴𝑖𝐵) ∧ ¬ 𝑖 = 1))))
1918rexbidv2 3171 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵) ↔ ∃𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) ∧ ¬ 𝑖 = 1)))
20 rexanali 3099 . . 3 (∃𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) ∧ ¬ 𝑖 = 1) ↔ ¬ ∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1))
2120a1i 11 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) ∧ ¬ 𝑖 = 1) ↔ ¬ ∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1)))
22 coprmgcdb 16620 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1) ↔ (𝐴 gcd 𝐵) = 1))
2322necon3bbid 2975 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (¬ ∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1) ↔ (𝐴 gcd 𝐵) ≠ 1))
2419, 21, 233bitrd 305 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵) ↔ (𝐴 gcd 𝐵) ≠ 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  wne 2937  wral 3058  wrex 3067   class class class wbr 5148  cfv 6548  (class class class)co 7420  1c1 11140  cn 12243  2c2 12298  cuz 12853  cdvds 16231   gcd cgcd 16469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216  ax-pre-sup 11217
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9466  df-inf 9467  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-div 11903  df-nn 12244  df-2 12306  df-3 12307  df-n0 12504  df-z 12590  df-uz 12854  df-rp 13008  df-seq 14000  df-exp 14060  df-cj 15079  df-re 15080  df-im 15081  df-sqrt 15215  df-abs 15216  df-dvds 16232  df-gcd 16470
This theorem is referenced by:  ncoprmgcdgt1b  16622  prmdvdsncoprmbd  16699  flt4lem2  42071
  Copyright terms: Public domain W3C validator
OSZAR »