![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nn0opthlem2 | Structured version Visualization version GIF version |
Description: Lemma for nn0opthi 14261. (Contributed by Raph Levien, 10-Dec-2002.) (Revised by Scott Fenton, 8-Sep-2010.) |
Ref | Expression |
---|---|
nn0opth.1 | ⊢ 𝐴 ∈ ℕ0 |
nn0opth.2 | ⊢ 𝐵 ∈ ℕ0 |
nn0opth.3 | ⊢ 𝐶 ∈ ℕ0 |
nn0opth.4 | ⊢ 𝐷 ∈ ℕ0 |
Ref | Expression |
---|---|
nn0opthlem2 | ⊢ ((𝐴 + 𝐵) < 𝐶 → ((𝐶 · 𝐶) + 𝐷) ≠ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0opth.1 | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
2 | nn0opth.2 | . . . . 5 ⊢ 𝐵 ∈ ℕ0 | |
3 | 1, 2 | nn0addcli 12539 | . . . 4 ⊢ (𝐴 + 𝐵) ∈ ℕ0 |
4 | nn0opth.3 | . . . 4 ⊢ 𝐶 ∈ ℕ0 | |
5 | 3, 4 | nn0opthlem1 14259 | . . 3 ⊢ ((𝐴 + 𝐵) < 𝐶 ↔ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))) < (𝐶 · 𝐶)) |
6 | 2 | nn0rei 12513 | . . . . . 6 ⊢ 𝐵 ∈ ℝ |
7 | 6, 1 | nn0addge2i 12551 | . . . . 5 ⊢ 𝐵 ≤ (𝐴 + 𝐵) |
8 | 3, 2 | nn0lele2xi 12557 | . . . . . 6 ⊢ (𝐵 ≤ (𝐴 + 𝐵) → 𝐵 ≤ (2 · (𝐴 + 𝐵))) |
9 | 2re 12316 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
10 | 3 | nn0rei 12513 | . . . . . . . 8 ⊢ (𝐴 + 𝐵) ∈ ℝ |
11 | 9, 10 | remulcli 11260 | . . . . . . 7 ⊢ (2 · (𝐴 + 𝐵)) ∈ ℝ |
12 | 10, 10 | remulcli 11260 | . . . . . . 7 ⊢ ((𝐴 + 𝐵) · (𝐴 + 𝐵)) ∈ ℝ |
13 | 6, 11, 12 | leadd2i 11800 | . . . . . 6 ⊢ (𝐵 ≤ (2 · (𝐴 + 𝐵)) ↔ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≤ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵)))) |
14 | 8, 13 | sylib 217 | . . . . 5 ⊢ (𝐵 ≤ (𝐴 + 𝐵) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≤ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵)))) |
15 | 7, 14 | ax-mp 5 | . . . 4 ⊢ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≤ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))) |
16 | 12, 6 | readdcli 11259 | . . . . 5 ⊢ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ∈ ℝ |
17 | 12, 11 | readdcli 11259 | . . . . 5 ⊢ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))) ∈ ℝ |
18 | 4 | nn0rei 12513 | . . . . . 6 ⊢ 𝐶 ∈ ℝ |
19 | 18, 18 | remulcli 11260 | . . . . 5 ⊢ (𝐶 · 𝐶) ∈ ℝ |
20 | 16, 17, 19 | lelttri 11371 | . . . 4 ⊢ (((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≤ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))) ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))) < (𝐶 · 𝐶)) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) < (𝐶 · 𝐶)) |
21 | 15, 20 | mpan 688 | . . 3 ⊢ ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))) < (𝐶 · 𝐶) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) < (𝐶 · 𝐶)) |
22 | 5, 21 | sylbi 216 | . 2 ⊢ ((𝐴 + 𝐵) < 𝐶 → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) < (𝐶 · 𝐶)) |
23 | nn0opth.4 | . . . 4 ⊢ 𝐷 ∈ ℕ0 | |
24 | 19, 23 | nn0addge1i 12550 | . . 3 ⊢ (𝐶 · 𝐶) ≤ ((𝐶 · 𝐶) + 𝐷) |
25 | 23 | nn0rei 12513 | . . . . 5 ⊢ 𝐷 ∈ ℝ |
26 | 19, 25 | readdcli 11259 | . . . 4 ⊢ ((𝐶 · 𝐶) + 𝐷) ∈ ℝ |
27 | 16, 19, 26 | ltletri 11372 | . . 3 ⊢ (((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) < (𝐶 · 𝐶) ∧ (𝐶 · 𝐶) ≤ ((𝐶 · 𝐶) + 𝐷)) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) < ((𝐶 · 𝐶) + 𝐷)) |
28 | 24, 27 | mpan2 689 | . 2 ⊢ ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) < (𝐶 · 𝐶) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) < ((𝐶 · 𝐶) + 𝐷)) |
29 | 16, 26 | ltnei 11368 | . 2 ⊢ ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) < ((𝐶 · 𝐶) + 𝐷) → ((𝐶 · 𝐶) + 𝐷) ≠ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵)) |
30 | 22, 28, 29 | 3syl 18 | 1 ⊢ ((𝐴 + 𝐵) < 𝐶 → ((𝐶 · 𝐶) + 𝐷) ≠ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2098 ≠ wne 2930 class class class wbr 5148 (class class class)co 7417 + caddc 11141 · cmul 11143 < clt 11278 ≤ cle 11279 2c2 12297 ℕ0cn0 12502 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3965 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-riota 7373 df-ov 7420 df-oprab 7421 df-mpo 7422 df-om 7870 df-2nd 7993 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8723 df-en 8963 df-dom 8964 df-sdom 8965 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305 df-n0 12503 df-z 12589 df-uz 12853 df-seq 13999 df-exp 14059 |
This theorem is referenced by: nn0opthi 14261 |
Copyright terms: Public domain | W3C validator |