![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > numclwwlk1lem2f | Structured version Visualization version GIF version |
Description: 𝑇 is a function, mapping a double loop of length 𝑁 on vertex 𝑋 to the ordered pair of the first loop and the successor of 𝑋 in the second loop, which must be a neighbor of 𝑋. (Contributed by Alexander van der Vekens, 19-Sep-2018.) (Revised by AV, 29-May-2021.) (Proof shortened by AV, 23-Feb-2022.) (Revised by AV, 31-Oct-2022.) |
Ref | Expression |
---|---|
extwwlkfab.v | ⊢ 𝑉 = (Vtx‘𝐺) |
extwwlkfab.c | ⊢ 𝐶 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}) |
extwwlkfab.f | ⊢ 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) |
numclwwlk.t | ⊢ 𝑇 = (𝑢 ∈ (𝑋𝐶𝑁) ↦ 〈(𝑢 prefix (𝑁 − 2)), (𝑢‘(𝑁 − 1))〉) |
Ref | Expression |
---|---|
numclwwlk1lem2f | ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → 𝑇:(𝑋𝐶𝑁)⟶(𝐹 × (𝐺 NeighbVtx 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | extwwlkfab.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | extwwlkfab.c | . . . . 5 ⊢ 𝐶 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) = 𝑣}) | |
3 | extwwlkfab.f | . . . . 5 ⊢ 𝐹 = (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) | |
4 | 1, 2, 3 | extwwlkfabel 30176 | . . . 4 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → (𝑢 ∈ (𝑋𝐶𝑁) ↔ (𝑢 ∈ (𝑁 ClWWalksN 𝐺) ∧ ((𝑢 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑢‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑢‘(𝑁 − 2)) = 𝑋)))) |
5 | simpr1 1192 | . . . . 5 ⊢ ((𝑢 ∈ (𝑁 ClWWalksN 𝐺) ∧ ((𝑢 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑢‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑢‘(𝑁 − 2)) = 𝑋)) → (𝑢 prefix (𝑁 − 2)) ∈ 𝐹) | |
6 | simpr2 1193 | . . . . 5 ⊢ ((𝑢 ∈ (𝑁 ClWWalksN 𝐺) ∧ ((𝑢 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑢‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑢‘(𝑁 − 2)) = 𝑋)) → (𝑢‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋)) | |
7 | 5, 6 | opelxpd 5717 | . . . 4 ⊢ ((𝑢 ∈ (𝑁 ClWWalksN 𝐺) ∧ ((𝑢 prefix (𝑁 − 2)) ∈ 𝐹 ∧ (𝑢‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑢‘(𝑁 − 2)) = 𝑋)) → 〈(𝑢 prefix (𝑁 − 2)), (𝑢‘(𝑁 − 1))〉 ∈ (𝐹 × (𝐺 NeighbVtx 𝑋))) |
8 | 4, 7 | biimtrdi 252 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → (𝑢 ∈ (𝑋𝐶𝑁) → 〈(𝑢 prefix (𝑁 − 2)), (𝑢‘(𝑁 − 1))〉 ∈ (𝐹 × (𝐺 NeighbVtx 𝑋)))) |
9 | 8 | imp 406 | . 2 ⊢ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) ∧ 𝑢 ∈ (𝑋𝐶𝑁)) → 〈(𝑢 prefix (𝑁 − 2)), (𝑢‘(𝑁 − 1))〉 ∈ (𝐹 × (𝐺 NeighbVtx 𝑋))) |
10 | numclwwlk.t | . 2 ⊢ 𝑇 = (𝑢 ∈ (𝑋𝐶𝑁) ↦ 〈(𝑢 prefix (𝑁 − 2)), (𝑢‘(𝑁 − 1))〉) | |
11 | 9, 10 | fmptd 7124 | 1 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → 𝑇:(𝑋𝐶𝑁)⟶(𝐹 × (𝐺 NeighbVtx 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 {crab 3429 〈cop 4635 ↦ cmpt 5231 × cxp 5676 ⟶wf 6544 ‘cfv 6548 (class class class)co 7420 ∈ cmpo 7422 1c1 11140 − cmin 11475 2c2 12298 3c3 12299 ℤ≥cuz 12853 prefix cpfx 14653 Vtxcvtx 28822 USGraphcusgr 28975 NeighbVtx cnbgr 29158 ClWWalksN cclwwlkn 29847 ClWWalksNOncclwwlknon 29910 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-oadd 8491 df-er 8725 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-dju 9925 df-card 9963 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-nn 12244 df-2 12306 df-3 12307 df-n0 12504 df-xnn0 12576 df-z 12590 df-uz 12854 df-fz 13518 df-fzo 13661 df-hash 14323 df-word 14498 df-lsw 14546 df-substr 14624 df-pfx 14654 df-edg 28874 df-upgr 28908 df-umgr 28909 df-usgr 28977 df-nbgr 29159 df-wwlks 29654 df-wwlksn 29655 df-clwwlk 29805 df-clwwlkn 29848 df-clwwlknon 29911 |
This theorem is referenced by: numclwwlk1lem2f1 30180 numclwwlk1lem2fo 30181 |
Copyright terms: Public domain | W3C validator |