MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oacl Structured version   Visualization version   GIF version

Theorem oacl 8550
Description: Closure law for ordinal addition. Proposition 8.2 of [TakeutiZaring] p. 57. Remark 2.8 of [Schloeder] p. 5. (Contributed by NM, 5-May-1995.)
Assertion
Ref Expression
oacl ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ∈ On)

Proof of Theorem oacl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7423 . . . 4 (𝑥 = ∅ → (𝐴 +o 𝑥) = (𝐴 +o ∅))
21eleq1d 2814 . . 3 (𝑥 = ∅ → ((𝐴 +o 𝑥) ∈ On ↔ (𝐴 +o ∅) ∈ On))
3 oveq2 7423 . . . 4 (𝑥 = 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o 𝑦))
43eleq1d 2814 . . 3 (𝑥 = 𝑦 → ((𝐴 +o 𝑥) ∈ On ↔ (𝐴 +o 𝑦) ∈ On))
5 oveq2 7423 . . . 4 (𝑥 = suc 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o suc 𝑦))
65eleq1d 2814 . . 3 (𝑥 = suc 𝑦 → ((𝐴 +o 𝑥) ∈ On ↔ (𝐴 +o suc 𝑦) ∈ On))
7 oveq2 7423 . . . 4 (𝑥 = 𝐵 → (𝐴 +o 𝑥) = (𝐴 +o 𝐵))
87eleq1d 2814 . . 3 (𝑥 = 𝐵 → ((𝐴 +o 𝑥) ∈ On ↔ (𝐴 +o 𝐵) ∈ On))
9 oa0 8531 . . . . 5 (𝐴 ∈ On → (𝐴 +o ∅) = 𝐴)
109eleq1d 2814 . . . 4 (𝐴 ∈ On → ((𝐴 +o ∅) ∈ On ↔ 𝐴 ∈ On))
1110ibir 268 . . 3 (𝐴 ∈ On → (𝐴 +o ∅) ∈ On)
12 onsuc 7809 . . . . 5 ((𝐴 +o 𝑦) ∈ On → suc (𝐴 +o 𝑦) ∈ On)
13 oasuc 8539 . . . . . 6 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 +o suc 𝑦) = suc (𝐴 +o 𝑦))
1413eleq1d 2814 . . . . 5 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 +o suc 𝑦) ∈ On ↔ suc (𝐴 +o 𝑦) ∈ On))
1512, 14imbitrrid 245 . . . 4 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 +o 𝑦) ∈ On → (𝐴 +o suc 𝑦) ∈ On))
1615expcom 413 . . 3 (𝑦 ∈ On → (𝐴 ∈ On → ((𝐴 +o 𝑦) ∈ On → (𝐴 +o suc 𝑦) ∈ On)))
17 vex 3474 . . . . . 6 𝑥 ∈ V
18 iunon 8354 . . . . . 6 ((𝑥 ∈ V ∧ ∀𝑦𝑥 (𝐴 +o 𝑦) ∈ On) → 𝑦𝑥 (𝐴 +o 𝑦) ∈ On)
1917, 18mpan 689 . . . . 5 (∀𝑦𝑥 (𝐴 +o 𝑦) ∈ On → 𝑦𝑥 (𝐴 +o 𝑦) ∈ On)
20 oalim 8547 . . . . . . 7 ((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐴 +o 𝑥) = 𝑦𝑥 (𝐴 +o 𝑦))
2117, 20mpanr1 702 . . . . . 6 ((𝐴 ∈ On ∧ Lim 𝑥) → (𝐴 +o 𝑥) = 𝑦𝑥 (𝐴 +o 𝑦))
2221eleq1d 2814 . . . . 5 ((𝐴 ∈ On ∧ Lim 𝑥) → ((𝐴 +o 𝑥) ∈ On ↔ 𝑦𝑥 (𝐴 +o 𝑦) ∈ On))
2319, 22imbitrrid 245 . . . 4 ((𝐴 ∈ On ∧ Lim 𝑥) → (∀𝑦𝑥 (𝐴 +o 𝑦) ∈ On → (𝐴 +o 𝑥) ∈ On))
2423expcom 413 . . 3 (Lim 𝑥 → (𝐴 ∈ On → (∀𝑦𝑥 (𝐴 +o 𝑦) ∈ On → (𝐴 +o 𝑥) ∈ On)))
252, 4, 6, 8, 11, 16, 24tfinds3 7864 . 2 (𝐵 ∈ On → (𝐴 ∈ On → (𝐴 +o 𝐵) ∈ On))
2625impcom 407 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  wral 3057  Vcvv 3470  c0 4319   ciun 4992  Oncon0 6364  Lim wlim 6365  suc csuc 6366  (class class class)co 7415   +o coa 8478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pr 5424  ax-un 7735
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-iun 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7866  df-2nd 7989  df-frecs 8281  df-wrecs 8312  df-recs 8386  df-rdg 8425  df-oadd 8485
This theorem is referenced by:  omcl  8551  oaord  8562  oacan  8563  oaword  8564  oawordri  8565  oawordeulem  8569  oalimcl  8575  oaass  8576  oaf1o  8578  odi  8594  omopth2  8599  oeoalem  8611  oeoa  8612  oancom  9669  cantnfvalf  9683  dfac12lem2  10162  djunum  10213  wunex3  10759  rdgeqoa  36844  oaomoecl  42698  oawordex2  42746  omabs2  42752  tfsconcatlem  42756  tfsconcatun  42757  tfsconcatfv2  42760  tfsconcatfv  42761  tfsconcatrn  42762  tfsconcatb0  42764  tfsconcatrev  42768  ofoafg  42774  oaun3lem1  42794  oaun3lem2  42795  oaun3lem3  42796  oaun3lem4  42797  oadif1  42800  oaun2  42801  oaun3  42802  naddgeoa  42815  naddwordnexlem3  42820  oawordex3  42821  naddwordnexlem4  42822  oa1cl  42868
  Copyright terms: Public domain W3C validator
OSZAR »