![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oacl | Structured version Visualization version GIF version |
Description: Closure law for ordinal addition. Proposition 8.2 of [TakeutiZaring] p. 57. Remark 2.8 of [Schloeder] p. 5. (Contributed by NM, 5-May-1995.) |
Ref | Expression |
---|---|
oacl | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7423 | . . . 4 ⊢ (𝑥 = ∅ → (𝐴 +o 𝑥) = (𝐴 +o ∅)) | |
2 | 1 | eleq1d 2814 | . . 3 ⊢ (𝑥 = ∅ → ((𝐴 +o 𝑥) ∈ On ↔ (𝐴 +o ∅) ∈ On)) |
3 | oveq2 7423 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o 𝑦)) | |
4 | 3 | eleq1d 2814 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝐴 +o 𝑥) ∈ On ↔ (𝐴 +o 𝑦) ∈ On)) |
5 | oveq2 7423 | . . . 4 ⊢ (𝑥 = suc 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o suc 𝑦)) | |
6 | 5 | eleq1d 2814 | . . 3 ⊢ (𝑥 = suc 𝑦 → ((𝐴 +o 𝑥) ∈ On ↔ (𝐴 +o suc 𝑦) ∈ On)) |
7 | oveq2 7423 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝐴 +o 𝑥) = (𝐴 +o 𝐵)) | |
8 | 7 | eleq1d 2814 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝐴 +o 𝑥) ∈ On ↔ (𝐴 +o 𝐵) ∈ On)) |
9 | oa0 8531 | . . . . 5 ⊢ (𝐴 ∈ On → (𝐴 +o ∅) = 𝐴) | |
10 | 9 | eleq1d 2814 | . . . 4 ⊢ (𝐴 ∈ On → ((𝐴 +o ∅) ∈ On ↔ 𝐴 ∈ On)) |
11 | 10 | ibir 268 | . . 3 ⊢ (𝐴 ∈ On → (𝐴 +o ∅) ∈ On) |
12 | onsuc 7809 | . . . . 5 ⊢ ((𝐴 +o 𝑦) ∈ On → suc (𝐴 +o 𝑦) ∈ On) | |
13 | oasuc 8539 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 +o suc 𝑦) = suc (𝐴 +o 𝑦)) | |
14 | 13 | eleq1d 2814 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 +o suc 𝑦) ∈ On ↔ suc (𝐴 +o 𝑦) ∈ On)) |
15 | 12, 14 | imbitrrid 245 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 +o 𝑦) ∈ On → (𝐴 +o suc 𝑦) ∈ On)) |
16 | 15 | expcom 413 | . . 3 ⊢ (𝑦 ∈ On → (𝐴 ∈ On → ((𝐴 +o 𝑦) ∈ On → (𝐴 +o suc 𝑦) ∈ On))) |
17 | vex 3474 | . . . . . 6 ⊢ 𝑥 ∈ V | |
18 | iunon 8354 | . . . . . 6 ⊢ ((𝑥 ∈ V ∧ ∀𝑦 ∈ 𝑥 (𝐴 +o 𝑦) ∈ On) → ∪ 𝑦 ∈ 𝑥 (𝐴 +o 𝑦) ∈ On) | |
19 | 17, 18 | mpan 689 | . . . . 5 ⊢ (∀𝑦 ∈ 𝑥 (𝐴 +o 𝑦) ∈ On → ∪ 𝑦 ∈ 𝑥 (𝐴 +o 𝑦) ∈ On) |
20 | oalim 8547 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐴 +o 𝑥) = ∪ 𝑦 ∈ 𝑥 (𝐴 +o 𝑦)) | |
21 | 17, 20 | mpanr1 702 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ Lim 𝑥) → (𝐴 +o 𝑥) = ∪ 𝑦 ∈ 𝑥 (𝐴 +o 𝑦)) |
22 | 21 | eleq1d 2814 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ Lim 𝑥) → ((𝐴 +o 𝑥) ∈ On ↔ ∪ 𝑦 ∈ 𝑥 (𝐴 +o 𝑦) ∈ On)) |
23 | 19, 22 | imbitrrid 245 | . . . 4 ⊢ ((𝐴 ∈ On ∧ Lim 𝑥) → (∀𝑦 ∈ 𝑥 (𝐴 +o 𝑦) ∈ On → (𝐴 +o 𝑥) ∈ On)) |
24 | 23 | expcom 413 | . . 3 ⊢ (Lim 𝑥 → (𝐴 ∈ On → (∀𝑦 ∈ 𝑥 (𝐴 +o 𝑦) ∈ On → (𝐴 +o 𝑥) ∈ On))) |
25 | 2, 4, 6, 8, 11, 16, 24 | tfinds3 7864 | . 2 ⊢ (𝐵 ∈ On → (𝐴 ∈ On → (𝐴 +o 𝐵) ∈ On)) |
26 | 25 | impcom 407 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∀wral 3057 Vcvv 3470 ∅c0 4319 ∪ ciun 4992 Oncon0 6364 Lim wlim 6365 suc csuc 6366 (class class class)co 7415 +o coa 8478 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pr 5424 ax-un 7735 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7866 df-2nd 7989 df-frecs 8281 df-wrecs 8312 df-recs 8386 df-rdg 8425 df-oadd 8485 |
This theorem is referenced by: omcl 8551 oaord 8562 oacan 8563 oaword 8564 oawordri 8565 oawordeulem 8569 oalimcl 8575 oaass 8576 oaf1o 8578 odi 8594 omopth2 8599 oeoalem 8611 oeoa 8612 oancom 9669 cantnfvalf 9683 dfac12lem2 10162 djunum 10213 wunex3 10759 rdgeqoa 36844 oaomoecl 42698 oawordex2 42746 omabs2 42752 tfsconcatlem 42756 tfsconcatun 42757 tfsconcatfv2 42760 tfsconcatfv 42761 tfsconcatrn 42762 tfsconcatb0 42764 tfsconcatrev 42768 ofoafg 42774 oaun3lem1 42794 oaun3lem2 42795 oaun3lem3 42796 oaun3lem4 42797 oadif1 42800 oaun2 42801 oaun3 42802 naddgeoa 42815 naddwordnexlem3 42820 oawordex3 42821 naddwordnexlem4 42822 oa1cl 42868 |
Copyright terms: Public domain | W3C validator |