Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oaun3 Structured version   Visualization version   GIF version

Theorem oaun3 42814
Description: Ordinal addition as a union of classes. (Contributed by RP, 13-Feb-2025.)
Assertion
Ref Expression
oaun3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) = {{𝑥 ∣ ∃𝑎𝐴 𝑥 = 𝑎}, {𝑦 ∣ ∃𝑏𝐵 𝑦 = (𝐴 +o 𝑏)}, {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}})
Distinct variable groups:   𝐴,𝑎,𝑏,𝑥,𝑦,𝑧   𝐵,𝑎,𝑏,𝑥,𝑦,𝑧

Proof of Theorem oaun3
StepHypRef Expression
1 oacl 8560 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ∈ On)
21difexd 5333 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) ∖ 𝐴) ∈ V)
3 uniprg 4926 . . . . 5 ((𝐴 ∈ On ∧ ((𝐴 +o 𝐵) ∖ 𝐴) ∈ V) → {𝐴, ((𝐴 +o 𝐵) ∖ 𝐴)} = (𝐴 ∪ ((𝐴 +o 𝐵) ∖ 𝐴)))
42, 3syldan 589 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {𝐴, ((𝐴 +o 𝐵) ∖ 𝐴)} = (𝐴 ∪ ((𝐴 +o 𝐵) ∖ 𝐴)))
5 undif2 4478 . . . . 5 (𝐴 ∪ ((𝐴 +o 𝐵) ∖ 𝐴)) = (𝐴 ∪ (𝐴 +o 𝐵))
6 oaword1 8577 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ⊆ (𝐴 +o 𝐵))
7 ssequn1 4180 . . . . . 6 (𝐴 ⊆ (𝐴 +o 𝐵) ↔ (𝐴 ∪ (𝐴 +o 𝐵)) = (𝐴 +o 𝐵))
86, 7sylib 217 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∪ (𝐴 +o 𝐵)) = (𝐴 +o 𝐵))
95, 8eqtrid 2779 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∪ ((𝐴 +o 𝐵) ∖ 𝐴)) = (𝐴 +o 𝐵))
104, 9eqtrd 2767 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {𝐴, ((𝐴 +o 𝐵) ∖ 𝐴)} = (𝐴 +o 𝐵))
11 oaun3lem4 42809 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)} ∈ suc (𝐴 +o 𝐵))
12 unisng 4930 . . . 4 ({𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)} ∈ suc (𝐴 +o 𝐵) → {{𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}} = {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)})
1311, 12syl 17 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {{𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}} = {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)})
1410, 13uneq12d 4163 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ( {𝐴, ((𝐴 +o 𝐵) ∖ 𝐴)} ∪ {{𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}}) = ((𝐴 +o 𝐵) ∪ {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}))
15 uniun 4935 . . 3 ({𝐴, ((𝐴 +o 𝐵) ∖ 𝐴)} ∪ {{𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}}) = ( {𝐴, ((𝐴 +o 𝐵) ∖ 𝐴)} ∪ {{𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}})
16 df-tp 4635 . . . . 5 {𝐴, ((𝐴 +o 𝐵) ∖ 𝐴), {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}} = ({𝐴, ((𝐴 +o 𝐵) ∖ 𝐴)} ∪ {{𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}})
17 rp-abid 42810 . . . . . . 7 𝐴 = {𝑥 ∣ ∃𝑎𝐴 𝑥 = 𝑎}
1817a1i 11 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 = {𝑥 ∣ ∃𝑎𝐴 𝑥 = 𝑎})
19 oadif1 42812 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) ∖ 𝐴) = {𝑦 ∣ ∃𝑏𝐵 𝑦 = (𝐴 +o 𝑏)})
20 eqidd 2728 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)} = {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)})
2118, 19, 20tpeq123d 4755 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {𝐴, ((𝐴 +o 𝐵) ∖ 𝐴), {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}} = {{𝑥 ∣ ∃𝑎𝐴 𝑥 = 𝑎}, {𝑦 ∣ ∃𝑏𝐵 𝑦 = (𝐴 +o 𝑏)}, {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}})
2216, 21eqtr3id 2781 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ({𝐴, ((𝐴 +o 𝐵) ∖ 𝐴)} ∪ {{𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}}) = {{𝑥 ∣ ∃𝑎𝐴 𝑥 = 𝑎}, {𝑦 ∣ ∃𝑏𝐵 𝑦 = (𝐴 +o 𝑏)}, {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}})
2322unieqd 4923 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ({𝐴, ((𝐴 +o 𝐵) ∖ 𝐴)} ∪ {{𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}}) = {{𝑥 ∣ ∃𝑎𝐴 𝑥 = 𝑎}, {𝑦 ∣ ∃𝑏𝐵 𝑦 = (𝐴 +o 𝑏)}, {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}})
2415, 23eqtr3id 2781 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ( {𝐴, ((𝐴 +o 𝐵) ∖ 𝐴)} ∪ {{𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}}) = {{𝑥 ∣ ∃𝑎𝐴 𝑥 = 𝑎}, {𝑦 ∣ ∃𝑏𝐵 𝑦 = (𝐴 +o 𝑏)}, {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}})
25 oaun3lem2 42807 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)} ⊆ (𝐴 +o 𝐵))
26 ssequn2 4183 . . 3 ({𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)} ⊆ (𝐴 +o 𝐵) ↔ ((𝐴 +o 𝐵) ∪ {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}) = (𝐴 +o 𝐵))
2725, 26sylib 217 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) ∪ {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}) = (𝐴 +o 𝐵))
2814, 24, 273eqtr3rd 2776 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) = {{𝑥 ∣ ∃𝑎𝐴 𝑥 = 𝑎}, {𝑦 ∣ ∃𝑏𝐵 𝑦 = (𝐴 +o 𝑏)}, {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  {cab 2704  wrex 3066  Vcvv 3471  cdif 3944  cun 3945  wss 3947  {csn 4630  {cpr 4632  {ctp 4634   cuni 4910  Oncon0 6372  suc csuc 6374  (class class class)co 7424   +o coa 8488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-rep 5287  ax-sep 5301  ax-nul 5308  ax-pr 5431  ax-un 7744
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4911  df-int 4952  df-iun 5000  df-br 5151  df-opab 5213  df-mpt 5234  df-tr 5268  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-pred 6308  df-ord 6375  df-on 6376  df-lim 6377  df-suc 6378  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7875  df-2nd 7998  df-frecs 8291  df-wrecs 8322  df-recs 8396  df-rdg 8435  df-oadd 8495
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator
OSZAR »