![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > omlsilem | Structured version Visualization version GIF version |
Description: Lemma for orthomodular law in the Hilbert lattice. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
omlsilem.1 | ⊢ 𝐺 ∈ Sℋ |
omlsilem.2 | ⊢ 𝐻 ∈ Sℋ |
omlsilem.3 | ⊢ 𝐺 ⊆ 𝐻 |
omlsilem.4 | ⊢ (𝐻 ∩ (⊥‘𝐺)) = 0ℋ |
omlsilem.5 | ⊢ 𝐴 ∈ 𝐻 |
omlsilem.6 | ⊢ 𝐵 ∈ 𝐺 |
omlsilem.7 | ⊢ 𝐶 ∈ (⊥‘𝐺) |
Ref | Expression |
---|---|
omlsilem | ⊢ (𝐴 = (𝐵 +ℎ 𝐶) → 𝐴 ∈ 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omlsilem.2 | . . . . . . . . . 10 ⊢ 𝐻 ∈ Sℋ | |
2 | omlsilem.5 | . . . . . . . . . 10 ⊢ 𝐴 ∈ 𝐻 | |
3 | 1, 2 | shelii 31018 | . . . . . . . . 9 ⊢ 𝐴 ∈ ℋ |
4 | omlsilem.1 | . . . . . . . . . 10 ⊢ 𝐺 ∈ Sℋ | |
5 | omlsilem.6 | . . . . . . . . . 10 ⊢ 𝐵 ∈ 𝐺 | |
6 | 4, 5 | shelii 31018 | . . . . . . . . 9 ⊢ 𝐵 ∈ ℋ |
7 | shocss 31089 | . . . . . . . . . . 11 ⊢ (𝐺 ∈ Sℋ → (⊥‘𝐺) ⊆ ℋ) | |
8 | 4, 7 | ax-mp 5 | . . . . . . . . . 10 ⊢ (⊥‘𝐺) ⊆ ℋ |
9 | omlsilem.7 | . . . . . . . . . 10 ⊢ 𝐶 ∈ (⊥‘𝐺) | |
10 | 8, 9 | sselii 3975 | . . . . . . . . 9 ⊢ 𝐶 ∈ ℋ |
11 | 3, 6, 10 | hvsubaddi 30869 | . . . . . . . 8 ⊢ ((𝐴 −ℎ 𝐵) = 𝐶 ↔ (𝐵 +ℎ 𝐶) = 𝐴) |
12 | eqcom 2735 | . . . . . . . 8 ⊢ ((𝐵 +ℎ 𝐶) = 𝐴 ↔ 𝐴 = (𝐵 +ℎ 𝐶)) | |
13 | 11, 12 | bitri 275 | . . . . . . 7 ⊢ ((𝐴 −ℎ 𝐵) = 𝐶 ↔ 𝐴 = (𝐵 +ℎ 𝐶)) |
14 | omlsilem.3 | . . . . . . . . . 10 ⊢ 𝐺 ⊆ 𝐻 | |
15 | 14, 5 | sselii 3975 | . . . . . . . . 9 ⊢ 𝐵 ∈ 𝐻 |
16 | shsubcl 31023 | . . . . . . . . 9 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (𝐴 −ℎ 𝐵) ∈ 𝐻) | |
17 | 1, 2, 15, 16 | mp3an 1458 | . . . . . . . 8 ⊢ (𝐴 −ℎ 𝐵) ∈ 𝐻 |
18 | eleq1 2817 | . . . . . . . 8 ⊢ ((𝐴 −ℎ 𝐵) = 𝐶 → ((𝐴 −ℎ 𝐵) ∈ 𝐻 ↔ 𝐶 ∈ 𝐻)) | |
19 | 17, 18 | mpbii 232 | . . . . . . 7 ⊢ ((𝐴 −ℎ 𝐵) = 𝐶 → 𝐶 ∈ 𝐻) |
20 | 13, 19 | sylbir 234 | . . . . . 6 ⊢ (𝐴 = (𝐵 +ℎ 𝐶) → 𝐶 ∈ 𝐻) |
21 | omlsilem.4 | . . . . . . . 8 ⊢ (𝐻 ∩ (⊥‘𝐺)) = 0ℋ | |
22 | 21 | eleq2i 2821 | . . . . . . 7 ⊢ (𝐶 ∈ (𝐻 ∩ (⊥‘𝐺)) ↔ 𝐶 ∈ 0ℋ) |
23 | elin 3961 | . . . . . . 7 ⊢ (𝐶 ∈ (𝐻 ∩ (⊥‘𝐺)) ↔ (𝐶 ∈ 𝐻 ∧ 𝐶 ∈ (⊥‘𝐺))) | |
24 | elch0 31057 | . . . . . . 7 ⊢ (𝐶 ∈ 0ℋ ↔ 𝐶 = 0ℎ) | |
25 | 22, 23, 24 | 3bitr3i 301 | . . . . . 6 ⊢ ((𝐶 ∈ 𝐻 ∧ 𝐶 ∈ (⊥‘𝐺)) ↔ 𝐶 = 0ℎ) |
26 | 20, 9, 25 | sylanblc 588 | . . . . 5 ⊢ (𝐴 = (𝐵 +ℎ 𝐶) → 𝐶 = 0ℎ) |
27 | 26 | oveq2d 7430 | . . . 4 ⊢ (𝐴 = (𝐵 +ℎ 𝐶) → (𝐵 +ℎ 𝐶) = (𝐵 +ℎ 0ℎ)) |
28 | ax-hvaddid 30807 | . . . . 5 ⊢ (𝐵 ∈ ℋ → (𝐵 +ℎ 0ℎ) = 𝐵) | |
29 | 6, 28 | ax-mp 5 | . . . 4 ⊢ (𝐵 +ℎ 0ℎ) = 𝐵 |
30 | 27, 29 | eqtrdi 2784 | . . 3 ⊢ (𝐴 = (𝐵 +ℎ 𝐶) → (𝐵 +ℎ 𝐶) = 𝐵) |
31 | 30, 5 | eqeltrdi 2837 | . 2 ⊢ (𝐴 = (𝐵 +ℎ 𝐶) → (𝐵 +ℎ 𝐶) ∈ 𝐺) |
32 | eleq1 2817 | . 2 ⊢ (𝐴 = (𝐵 +ℎ 𝐶) → (𝐴 ∈ 𝐺 ↔ (𝐵 +ℎ 𝐶) ∈ 𝐺)) | |
33 | 31, 32 | mpbird 257 | 1 ⊢ (𝐴 = (𝐵 +ℎ 𝐶) → 𝐴 ∈ 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∩ cin 3944 ⊆ wss 3945 ‘cfv 6542 (class class class)co 7414 ℋchba 30722 +ℎ cva 30723 0ℎc0v 30727 −ℎ cmv 30728 Sℋ csh 30731 ⊥cort 30733 0ℋc0h 30738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-hilex 30802 ax-hfvadd 30803 ax-hvcom 30804 ax-hvass 30805 ax-hv0cl 30806 ax-hvaddid 30807 ax-hfvmul 30808 ax-hvmulid 30809 ax-hvdistr2 30812 ax-hvmul0 30813 ax-hfi 30882 ax-his2 30886 ax-his3 30887 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11274 df-mnf 11275 df-ltxr 11277 df-sub 11470 df-neg 11471 df-hvsub 30774 df-sh 31010 df-oc 31055 df-ch0 31056 |
This theorem is referenced by: omlsii 31206 |
Copyright terms: Public domain | W3C validator |