Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovnn0val Structured version   Visualization version   GIF version

Theorem ovnn0val 46077
Description: The value of a (multidimensional) Lebesgue outer measure, defined on a nonzero-dimensional space of reals. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
ovnn0val.1 (𝜑𝑋 ∈ Fin)
ovnn0val.2 (𝜑𝑋 ≠ ∅)
ovnn0val.3 (𝜑𝐴 ⊆ (ℝ ↑m 𝑋))
ovnn0val.4 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}
Assertion
Ref Expression
ovnn0val (𝜑 → ((voln*‘𝑋)‘𝐴) = inf(𝑀, ℝ*, < ))
Distinct variable groups:   𝐴,𝑖,𝑧   𝑖,𝑋,𝑗,𝑘,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑖,𝑗,𝑘)   𝐴(𝑗,𝑘)   𝑀(𝑧,𝑖,𝑗,𝑘)

Proof of Theorem ovnn0val
StepHypRef Expression
1 ovnn0val.1 . . 3 (𝜑𝑋 ∈ Fin)
2 ovnn0val.3 . . 3 (𝜑𝐴 ⊆ (ℝ ↑m 𝑋))
3 ovnn0val.4 . . 3 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}
41, 2, 3ovnval2 46071 . 2 (𝜑 → ((voln*‘𝑋)‘𝐴) = if(𝑋 = ∅, 0, inf(𝑀, ℝ*, < )))
5 ovnn0val.2 . . . 4 (𝜑𝑋 ≠ ∅)
65neneqd 2934 . . 3 (𝜑 → ¬ 𝑋 = ∅)
76iffalsed 4541 . 2 (𝜑 → if(𝑋 = ∅, 0, inf(𝑀, ℝ*, < )) = inf(𝑀, ℝ*, < ))
84, 7eqtrd 2765 1 (𝜑 → ((voln*‘𝑋)‘𝐴) = inf(𝑀, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wne 2929  wrex 3059  {crab 3418  wss 3944  c0 4322  ifcif 4530   ciun 4997  cmpt 5232   × cxp 5676  ccom 5682  cfv 6549  (class class class)co 7419  m cmap 8845  Xcixp 8916  Fincfn 8964  infcinf 9466  cr 11139  0cc0 11140  *cxr 11279   < clt 11280  cn 12245  [,)cico 13361  cprod 15885  volcvol 25436  Σ^csumge0 45888  voln*covoln 46062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-mulcl 11202  ax-i2m1 11208  ax-pre-lttri 11214  ax-pre-lttrn 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-po 5590  df-so 5591  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9467  df-inf 9468  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-seq 14003  df-prod 15886  df-ovoln 46063
This theorem is referenced by:  ovnlecvr  46084  ovnsslelem  46086  ovnlerp  46088  ovnhoilem2  46128  ovnlecvr2  46136
  Copyright terms: Public domain W3C validator
OSZAR »