MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolicc2 Structured version   Visualization version   GIF version

Theorem ovolicc2 25444
Description: The measure of a closed interval is upper bounded by its length. (Contributed by Mario Carneiro, 14-Jun-2014.)
Hypotheses
Ref Expression
ovolicc.1 (𝜑𝐴 ∈ ℝ)
ovolicc.2 (𝜑𝐵 ∈ ℝ)
ovolicc.3 (𝜑𝐴𝐵)
ovolicc2.m 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)((𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
Assertion
Ref Expression
ovolicc2 (𝜑 → (𝐵𝐴) ≤ (vol*‘(𝐴[,]𝐵)))
Distinct variable groups:   𝑦,𝑓,𝐴   𝐵,𝑓,𝑦   𝑦,𝑀   𝜑,𝑓,𝑦
Allowed substitution hint:   𝑀(𝑓)

Proof of Theorem ovolicc2
Dummy variables 𝑔 𝑘 𝑡 𝑢 𝑣 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovolicc2.m . . . . . 6 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)((𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
21elovolm 25397 . . . . 5 (𝑧𝑀 ↔ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)((𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
3 simprr 772 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓))) → (𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓))
4 unieq 4914 . . . . . . . . . . . . . 14 (𝑢 = ran ((,) ∘ 𝑓) → 𝑢 = ran ((,) ∘ 𝑓))
54sseq2d 4010 . . . . . . . . . . . . 13 (𝑢 = ran ((,) ∘ 𝑓) → ((𝐴[,]𝐵) ⊆ 𝑢 ↔ (𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓)))
6 pweq 4612 . . . . . . . . . . . . . . 15 (𝑢 = ran ((,) ∘ 𝑓) → 𝒫 𝑢 = 𝒫 ran ((,) ∘ 𝑓))
76ineq1d 4207 . . . . . . . . . . . . . 14 (𝑢 = ran ((,) ∘ 𝑓) → (𝒫 𝑢 ∩ Fin) = (𝒫 ran ((,) ∘ 𝑓) ∩ Fin))
87rexeqdv 3322 . . . . . . . . . . . . 13 (𝑢 = ran ((,) ∘ 𝑓) → (∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑣 ↔ ∃𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑣))
95, 8imbi12d 344 . . . . . . . . . . . 12 (𝑢 = ran ((,) ∘ 𝑓) → (((𝐴[,]𝐵) ⊆ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑣) ↔ ((𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓) → ∃𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑣)))
10 ovolicc.1 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℝ)
11 ovolicc.2 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℝ)
12 eqid 2728 . . . . . . . . . . . . . . . 16 (topGen‘ran (,)) = (topGen‘ran (,))
13 eqid 2728 . . . . . . . . . . . . . . . 16 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))
1412, 13icccmp 24734 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Comp)
1510, 11, 14syl2anc 583 . . . . . . . . . . . . . 14 (𝜑 → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Comp)
16 retop 24671 . . . . . . . . . . . . . . 15 (topGen‘ran (,)) ∈ Top
17 iccssre 13432 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
1810, 11, 17syl2anc 583 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
19 uniretop 24672 . . . . . . . . . . . . . . . 16 ℝ = (topGen‘ran (,))
2019cmpsub 23297 . . . . . . . . . . . . . . 15 (((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ) → (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Comp ↔ ∀𝑢 ∈ 𝒫 (topGen‘ran (,))((𝐴[,]𝐵) ⊆ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑣)))
2116, 18, 20sylancr 586 . . . . . . . . . . . . . 14 (𝜑 → (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Comp ↔ ∀𝑢 ∈ 𝒫 (topGen‘ran (,))((𝐴[,]𝐵) ⊆ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑣)))
2215, 21mpbid 231 . . . . . . . . . . . . 13 (𝜑 → ∀𝑢 ∈ 𝒫 (topGen‘ran (,))((𝐴[,]𝐵) ⊆ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑣))
2322adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓))) → ∀𝑢 ∈ 𝒫 (topGen‘ran (,))((𝐴[,]𝐵) ⊆ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑣))
24 ioof 13450 . . . . . . . . . . . . . . . . . . 19 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
25 ffn 6716 . . . . . . . . . . . . . . . . . . 19 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
2624, 25ax-mp 5 . . . . . . . . . . . . . . . . . 18 (,) Fn (ℝ* × ℝ*)
27 dffn3 6729 . . . . . . . . . . . . . . . . . 18 ((,) Fn (ℝ* × ℝ*) ↔ (,):(ℝ* × ℝ*)⟶ran (,))
2826, 27mpbi 229 . . . . . . . . . . . . . . . . 17 (,):(ℝ* × ℝ*)⟶ran (,)
29 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) → 𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ))
30 elovolmlem 25396 . . . . . . . . . . . . . . . . . . 19 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ↔ 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
3129, 30sylib 217 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) → 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
32 inss2 4225 . . . . . . . . . . . . . . . . . . 19 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
33 rexpssxrxp 11283 . . . . . . . . . . . . . . . . . . 19 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
3432, 33sstri 3987 . . . . . . . . . . . . . . . . . 18 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
35 fss 6733 . . . . . . . . . . . . . . . . . 18 ((𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)) → 𝑓:ℕ⟶(ℝ* × ℝ*))
3631, 34, 35sylancl 585 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) → 𝑓:ℕ⟶(ℝ* × ℝ*))
37 fco 6741 . . . . . . . . . . . . . . . . 17 (((,):(ℝ* × ℝ*)⟶ran (,) ∧ 𝑓:ℕ⟶(ℝ* × ℝ*)) → ((,) ∘ 𝑓):ℕ⟶ran (,))
3828, 36, 37sylancr 586 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) → ((,) ∘ 𝑓):ℕ⟶ran (,))
3938adantrr 716 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓))) → ((,) ∘ 𝑓):ℕ⟶ran (,))
4039frnd 6724 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓))) → ran ((,) ∘ 𝑓) ⊆ ran (,))
41 retopbas 24670 . . . . . . . . . . . . . . 15 ran (,) ∈ TopBases
42 bastg 22862 . . . . . . . . . . . . . . 15 (ran (,) ∈ TopBases → ran (,) ⊆ (topGen‘ran (,)))
4341, 42ax-mp 5 . . . . . . . . . . . . . 14 ran (,) ⊆ (topGen‘ran (,))
4440, 43sstrdi 3990 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓))) → ran ((,) ∘ 𝑓) ⊆ (topGen‘ran (,)))
45 fvex 6904 . . . . . . . . . . . . . 14 (topGen‘ran (,)) ∈ V
4645elpw2 5341 . . . . . . . . . . . . 13 (ran ((,) ∘ 𝑓) ∈ 𝒫 (topGen‘ran (,)) ↔ ran ((,) ∘ 𝑓) ⊆ (topGen‘ran (,)))
4744, 46sylibr 233 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓))) → ran ((,) ∘ 𝑓) ∈ 𝒫 (topGen‘ran (,)))
489, 23, 47rspcdva 3609 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓))) → ((𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓) → ∃𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑣))
493, 48mpd 15 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓))) → ∃𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑣)
50 simprl 770 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → 𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin))
51 elin 3961 . . . . . . . . . . . . . . . 16 (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ↔ (𝑣 ∈ 𝒫 ran ((,) ∘ 𝑓) ∧ 𝑣 ∈ Fin))
5250, 51sylib 217 . . . . . . . . . . . . . . 15 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → (𝑣 ∈ 𝒫 ran ((,) ∘ 𝑓) ∧ 𝑣 ∈ Fin))
5352simprd 495 . . . . . . . . . . . . . 14 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → 𝑣 ∈ Fin)
5452simpld 494 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → 𝑣 ∈ 𝒫 ran ((,) ∘ 𝑓))
5554elpwid 4607 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → 𝑣 ⊆ ran ((,) ∘ 𝑓))
5655sseld 3977 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → (𝑡𝑣𝑡 ∈ ran ((,) ∘ 𝑓)))
5738ffnd 6717 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) → ((,) ∘ 𝑓) Fn ℕ)
5857adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → ((,) ∘ 𝑓) Fn ℕ)
59 fvelrnb 6953 . . . . . . . . . . . . . . . . 17 (((,) ∘ 𝑓) Fn ℕ → (𝑡 ∈ ran ((,) ∘ 𝑓) ↔ ∃𝑘 ∈ ℕ (((,) ∘ 𝑓)‘𝑘) = 𝑡))
6058, 59syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → (𝑡 ∈ ran ((,) ∘ 𝑓) ↔ ∃𝑘 ∈ ℕ (((,) ∘ 𝑓)‘𝑘) = 𝑡))
6156, 60sylibd 238 . . . . . . . . . . . . . . 15 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → (𝑡𝑣 → ∃𝑘 ∈ ℕ (((,) ∘ 𝑓)‘𝑘) = 𝑡))
6261ralrimiv 3141 . . . . . . . . . . . . . 14 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → ∀𝑡𝑣𝑘 ∈ ℕ (((,) ∘ 𝑓)‘𝑘) = 𝑡)
63 fveqeq2 6900 . . . . . . . . . . . . . . 15 (𝑘 = (𝑔𝑡) → ((((,) ∘ 𝑓)‘𝑘) = 𝑡 ↔ (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡))
6463ac6sfi 9305 . . . . . . . . . . . . . 14 ((𝑣 ∈ Fin ∧ ∀𝑡𝑣𝑘 ∈ ℕ (((,) ∘ 𝑓)‘𝑘) = 𝑡) → ∃𝑔(𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡))
6553, 62, 64syl2anc 583 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → ∃𝑔(𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡))
6610ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ ((𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣) ∧ (𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡))) → 𝐴 ∈ ℝ)
6711ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ ((𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣) ∧ (𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡))) → 𝐵 ∈ ℝ)
68 ovolicc.3 . . . . . . . . . . . . . . . . 17 (𝜑𝐴𝐵)
6968ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ ((𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣) ∧ (𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡))) → 𝐴𝐵)
70 eqid 2728 . . . . . . . . . . . . . . . 16 seq1( + , ((abs ∘ − ) ∘ 𝑓)) = seq1( + , ((abs ∘ − ) ∘ 𝑓))
7131adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ ((𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣) ∧ (𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡))) → 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
72 simprll 778 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ ((𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣) ∧ (𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡))) → 𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin))
73 simprlr 779 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ ((𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣) ∧ (𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡))) → (𝐴[,]𝐵) ⊆ 𝑣)
74 simprrl 780 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ ((𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣) ∧ (𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡))) → 𝑔:𝑣⟶ℕ)
75 simprrr 781 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ ((𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣) ∧ (𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡))) → ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡)
76 2fveq3 6896 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑥 → (((,) ∘ 𝑓)‘(𝑔𝑡)) = (((,) ∘ 𝑓)‘(𝑔𝑥)))
77 id 22 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑥𝑡 = 𝑥)
7876, 77eqeq12d 2744 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑥 → ((((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡 ↔ (((,) ∘ 𝑓)‘(𝑔𝑥)) = 𝑥))
7978rspccva 3607 . . . . . . . . . . . . . . . . 17 ((∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡𝑥𝑣) → (((,) ∘ 𝑓)‘(𝑔𝑥)) = 𝑥)
8075, 79sylan 579 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ ((𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣) ∧ (𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡))) ∧ 𝑥𝑣) → (((,) ∘ 𝑓)‘(𝑔𝑥)) = 𝑥)
81 eqid 2728 . . . . . . . . . . . . . . . 16 {𝑢𝑣 ∣ (𝑢 ∩ (𝐴[,]𝐵)) ≠ ∅} = {𝑢𝑣 ∣ (𝑢 ∩ (𝐴[,]𝐵)) ≠ ∅}
8266, 67, 69, 70, 71, 72, 73, 74, 80, 81ovolicc2lem5 25443 . . . . . . . . . . . . . . 15 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ ((𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣) ∧ (𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡))) → (𝐵𝐴) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
8382expr 456 . . . . . . . . . . . . . 14 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → ((𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡) → (𝐵𝐴) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
8483exlimdv 1929 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → (∃𝑔(𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡) → (𝐵𝐴) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
8565, 84mpd 15 . . . . . . . . . . . 12 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → (𝐵𝐴) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
8685rexlimdvaa 3152 . . . . . . . . . . 11 ((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) → (∃𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑣 → (𝐵𝐴) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
8786adantrr 716 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓))) → (∃𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑣 → (𝐵𝐴) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
8849, 87mpd 15 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓))) → (𝐵𝐴) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
89 breq2 5146 . . . . . . . . 9 (𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) → ((𝐵𝐴) ≤ 𝑧 ↔ (𝐵𝐴) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
9088, 89syl5ibrcom 246 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓))) → (𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) → (𝐵𝐴) ≤ 𝑧))
9190expr 456 . . . . . . 7 ((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) → ((𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓) → (𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) → (𝐵𝐴) ≤ 𝑧)))
9291impd 410 . . . . . 6 ((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) → (((𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → (𝐵𝐴) ≤ 𝑧))
9392rexlimdva 3151 . . . . 5 (𝜑 → (∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)((𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → (𝐵𝐴) ≤ 𝑧))
942, 93biimtrid 241 . . . 4 (𝜑 → (𝑧𝑀 → (𝐵𝐴) ≤ 𝑧))
9594ralrimiv 3141 . . 3 (𝜑 → ∀𝑧𝑀 (𝐵𝐴) ≤ 𝑧)
961ssrab3 4076 . . . 4 𝑀 ⊆ ℝ*
9711, 10resubcld 11666 . . . . 5 (𝜑 → (𝐵𝐴) ∈ ℝ)
9897rexrd 11288 . . . 4 (𝜑 → (𝐵𝐴) ∈ ℝ*)
99 infxrgelb 13340 . . . 4 ((𝑀 ⊆ ℝ* ∧ (𝐵𝐴) ∈ ℝ*) → ((𝐵𝐴) ≤ inf(𝑀, ℝ*, < ) ↔ ∀𝑧𝑀 (𝐵𝐴) ≤ 𝑧))
10096, 98, 99sylancr 586 . . 3 (𝜑 → ((𝐵𝐴) ≤ inf(𝑀, ℝ*, < ) ↔ ∀𝑧𝑀 (𝐵𝐴) ≤ 𝑧))
10195, 100mpbird 257 . 2 (𝜑 → (𝐵𝐴) ≤ inf(𝑀, ℝ*, < ))
1021ovolval 25395 . . 3 ((𝐴[,]𝐵) ⊆ ℝ → (vol*‘(𝐴[,]𝐵)) = inf(𝑀, ℝ*, < ))
10318, 102syl 17 . 2 (𝜑 → (vol*‘(𝐴[,]𝐵)) = inf(𝑀, ℝ*, < ))
104101, 103breqtrrd 5170 1 (𝜑 → (𝐵𝐴) ≤ (vol*‘(𝐴[,]𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wex 1774  wcel 2099  wne 2936  wral 3057  wrex 3066  {crab 3428  cin 3944  wss 3945  c0 4318  𝒫 cpw 4598   cuni 4903   class class class wbr 5142   × cxp 5670  ran crn 5673  ccom 5676   Fn wfn 6537  wf 6538  cfv 6542  (class class class)co 7414  m cmap 8838  Fincfn 8957  supcsup 9457  infcinf 9458  cr 11131  1c1 11133   + caddc 11135  *cxr 11271   < clt 11272  cle 11273  cmin 11468  cn 12236  (,)cioo 13350  [,]cicc 13353  seqcseq 13992  abscabs 15207  t crest 17395  topGenctg 17412  Topctop 22788  TopBasesctb 22841  Compccmp 23283  vol*covol 25384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-inf2 9658  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209  ax-pre-sup 11210
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9527  df-card 9956  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-div 11896  df-nn 12237  df-2 12299  df-3 12300  df-n0 12497  df-z 12583  df-uz 12847  df-q 12957  df-rp 13001  df-xneg 13118  df-xadd 13119  df-xmul 13120  df-ioo 13354  df-ico 13356  df-icc 13357  df-fz 13511  df-fzo 13654  df-seq 13993  df-exp 14053  df-hash 14316  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15458  df-sum 15659  df-rest 17397  df-topgen 17418  df-psmet 21264  df-xmet 21265  df-met 21266  df-bl 21267  df-mopn 21268  df-top 22789  df-topon 22806  df-bases 22842  df-cmp 23284  df-ovol 25386
This theorem is referenced by:  ovolicc  25445
  Copyright terms: Public domain W3C validator
OSZAR »