![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pcoval1 | Structured version Visualization version GIF version |
Description: Evaluate the concatenation of two paths on the first half. (Contributed by Jeff Madsen, 15-Jun-2010.) (Revised by Mario Carneiro, 7-Jun-2014.) |
Ref | Expression |
---|---|
pcoval.2 | ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) |
pcoval.3 | ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
Ref | Expression |
---|---|
pcoval1 | ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,](1 / 2))) → ((𝐹(*𝑝‘𝐽)𝐺)‘𝑋) = (𝐹‘(2 · 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 11252 | . . . . 5 ⊢ 0 ∈ ℝ | |
2 | 1re 11250 | . . . . 5 ⊢ 1 ∈ ℝ | |
3 | 0le0 12349 | . . . . 5 ⊢ 0 ≤ 0 | |
4 | halfre 12462 | . . . . . 6 ⊢ (1 / 2) ∈ ℝ | |
5 | halflt1 12466 | . . . . . 6 ⊢ (1 / 2) < 1 | |
6 | 4, 2, 5 | ltleii 11373 | . . . . 5 ⊢ (1 / 2) ≤ 1 |
7 | iccss 13430 | . . . . 5 ⊢ (((0 ∈ ℝ ∧ 1 ∈ ℝ) ∧ (0 ≤ 0 ∧ (1 / 2) ≤ 1)) → (0[,](1 / 2)) ⊆ (0[,]1)) | |
8 | 1, 2, 3, 6, 7 | mp4an 691 | . . . 4 ⊢ (0[,](1 / 2)) ⊆ (0[,]1) |
9 | 8 | sseli 3976 | . . 3 ⊢ (𝑋 ∈ (0[,](1 / 2)) → 𝑋 ∈ (0[,]1)) |
10 | pcoval.2 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) | |
11 | pcoval.3 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) | |
12 | 10, 11 | pcovalg 24957 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → ((𝐹(*𝑝‘𝐽)𝐺)‘𝑋) = if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1)))) |
13 | 9, 12 | sylan2 591 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,](1 / 2))) → ((𝐹(*𝑝‘𝐽)𝐺)‘𝑋) = if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1)))) |
14 | elii1 24876 | . . . . 5 ⊢ (𝑋 ∈ (0[,](1 / 2)) ↔ (𝑋 ∈ (0[,]1) ∧ 𝑋 ≤ (1 / 2))) | |
15 | 14 | simprbi 495 | . . . 4 ⊢ (𝑋 ∈ (0[,](1 / 2)) → 𝑋 ≤ (1 / 2)) |
16 | 15 | iftrued 4538 | . . 3 ⊢ (𝑋 ∈ (0[,](1 / 2)) → if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))) = (𝐹‘(2 · 𝑋))) |
17 | 16 | adantl 480 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,](1 / 2))) → if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))) = (𝐹‘(2 · 𝑋))) |
18 | 13, 17 | eqtrd 2767 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,](1 / 2))) → ((𝐹(*𝑝‘𝐽)𝐺)‘𝑋) = (𝐹‘(2 · 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ⊆ wss 3947 ifcif 4530 class class class wbr 5150 ‘cfv 6551 (class class class)co 7424 ℝcr 11143 0cc0 11144 1c1 11145 · cmul 11149 ≤ cle 11285 − cmin 11480 / cdiv 11907 2c2 12303 [,]cicc 13365 Cn ccn 23146 IIcii 24813 *𝑝cpco 24945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-rep 5287 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-cnex 11200 ax-resscn 11201 ax-1cn 11202 ax-icn 11203 ax-addcl 11204 ax-addrcl 11205 ax-mulcl 11206 ax-mulrcl 11207 ax-mulcom 11208 ax-addass 11209 ax-mulass 11210 ax-distr 11211 ax-i2m1 11212 ax-1ne0 11213 ax-1rid 11214 ax-rnegex 11215 ax-rrecex 11216 ax-cnre 11217 ax-pre-lttri 11218 ax-pre-lttrn 11219 ax-pre-ltadd 11220 ax-pre-mulgt0 11221 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-iun 5000 df-br 5151 df-opab 5213 df-mpt 5234 df-id 5578 df-po 5592 df-so 5593 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-1st 7997 df-2nd 7998 df-er 8729 df-map 8851 df-en 8969 df-dom 8970 df-sdom 8971 df-pnf 11286 df-mnf 11287 df-xr 11288 df-ltxr 11289 df-le 11290 df-sub 11482 df-neg 11483 df-div 11908 df-2 12311 df-icc 13369 df-top 22814 df-topon 22831 df-cn 23149 df-pco 24950 |
This theorem is referenced by: pco0 24959 pcoass 24969 pcorevlem 24971 |
Copyright terms: Public domain | W3C validator |