![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pcprod | Structured version Visualization version GIF version |
Description: The product of the primes taken to their respective powers reconstructs the original number. (Contributed by Mario Carneiro, 12-Mar-2014.) |
Ref | Expression |
---|---|
pcprod.1 | ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝑁)), 1)) |
Ref | Expression |
---|---|
pcprod | ⊢ (𝑁 ∈ ℕ → (seq1( · , 𝐹)‘𝑁) = 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pcprod.1 | . . . . . 6 ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝑁)), 1)) | |
2 | pccl 16811 | . . . . . . . . 9 ⊢ ((𝑛 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑛 pCnt 𝑁) ∈ ℕ0) | |
3 | 2 | ancoms 458 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ) → (𝑛 pCnt 𝑁) ∈ ℕ0) |
4 | 3 | ralrimiva 3142 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → ∀𝑛 ∈ ℙ (𝑛 pCnt 𝑁) ∈ ℕ0) |
5 | 4 | adantl 481 | . . . . . 6 ⊢ ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ∀𝑛 ∈ ℙ (𝑛 pCnt 𝑁) ∈ ℕ0) |
6 | simpr 484 | . . . . . 6 ⊢ ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ) | |
7 | simpl 482 | . . . . . 6 ⊢ ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → 𝑝 ∈ ℙ) | |
8 | oveq1 7421 | . . . . . 6 ⊢ (𝑛 = 𝑝 → (𝑛 pCnt 𝑁) = (𝑝 pCnt 𝑁)) | |
9 | 1, 5, 6, 7, 8 | pcmpt 16854 | . . . . 5 ⊢ ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑝 pCnt (seq1( · , 𝐹)‘𝑁)) = if(𝑝 ≤ 𝑁, (𝑝 pCnt 𝑁), 0)) |
10 | iftrue 4530 | . . . . . . 7 ⊢ (𝑝 ≤ 𝑁 → if(𝑝 ≤ 𝑁, (𝑝 pCnt 𝑁), 0) = (𝑝 pCnt 𝑁)) | |
11 | 10 | adantl 481 | . . . . . 6 ⊢ (((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ 𝑝 ≤ 𝑁) → if(𝑝 ≤ 𝑁, (𝑝 pCnt 𝑁), 0) = (𝑝 pCnt 𝑁)) |
12 | iffalse 4533 | . . . . . . . 8 ⊢ (¬ 𝑝 ≤ 𝑁 → if(𝑝 ≤ 𝑁, (𝑝 pCnt 𝑁), 0) = 0) | |
13 | 12 | adantl 481 | . . . . . . 7 ⊢ (((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑝 ≤ 𝑁) → if(𝑝 ≤ 𝑁, (𝑝 pCnt 𝑁), 0) = 0) |
14 | prmz 16639 | . . . . . . . . . 10 ⊢ (𝑝 ∈ ℙ → 𝑝 ∈ ℤ) | |
15 | dvdsle 16280 | . . . . . . . . . 10 ⊢ ((𝑝 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑝 ∥ 𝑁 → 𝑝 ≤ 𝑁)) | |
16 | 14, 15 | sylan 579 | . . . . . . . . 9 ⊢ ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑝 ∥ 𝑁 → 𝑝 ≤ 𝑁)) |
17 | 16 | con3dimp 408 | . . . . . . . 8 ⊢ (((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑝 ≤ 𝑁) → ¬ 𝑝 ∥ 𝑁) |
18 | pceq0 16833 | . . . . . . . . 9 ⊢ ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ((𝑝 pCnt 𝑁) = 0 ↔ ¬ 𝑝 ∥ 𝑁)) | |
19 | 18 | adantr 480 | . . . . . . . 8 ⊢ (((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑝 ≤ 𝑁) → ((𝑝 pCnt 𝑁) = 0 ↔ ¬ 𝑝 ∥ 𝑁)) |
20 | 17, 19 | mpbird 257 | . . . . . . 7 ⊢ (((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑝 ≤ 𝑁) → (𝑝 pCnt 𝑁) = 0) |
21 | 13, 20 | eqtr4d 2771 | . . . . . 6 ⊢ (((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑝 ≤ 𝑁) → if(𝑝 ≤ 𝑁, (𝑝 pCnt 𝑁), 0) = (𝑝 pCnt 𝑁)) |
22 | 11, 21 | pm2.61dan 812 | . . . . 5 ⊢ ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → if(𝑝 ≤ 𝑁, (𝑝 pCnt 𝑁), 0) = (𝑝 pCnt 𝑁)) |
23 | 9, 22 | eqtrd 2768 | . . . 4 ⊢ ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑝 pCnt (seq1( · , 𝐹)‘𝑁)) = (𝑝 pCnt 𝑁)) |
24 | 23 | ancoms 458 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (seq1( · , 𝐹)‘𝑁)) = (𝑝 pCnt 𝑁)) |
25 | 24 | ralrimiva 3142 | . 2 ⊢ (𝑁 ∈ ℕ → ∀𝑝 ∈ ℙ (𝑝 pCnt (seq1( · , 𝐹)‘𝑁)) = (𝑝 pCnt 𝑁)) |
26 | 1, 4 | pcmptcl 16853 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (𝐹:ℕ⟶ℕ ∧ seq1( · , 𝐹):ℕ⟶ℕ)) |
27 | 26 | simprd 495 | . . . . 5 ⊢ (𝑁 ∈ ℕ → seq1( · , 𝐹):ℕ⟶ℕ) |
28 | ffvelcdm 7085 | . . . . 5 ⊢ ((seq1( · , 𝐹):ℕ⟶ℕ ∧ 𝑁 ∈ ℕ) → (seq1( · , 𝐹)‘𝑁) ∈ ℕ) | |
29 | 27, 28 | mpancom 687 | . . . 4 ⊢ (𝑁 ∈ ℕ → (seq1( · , 𝐹)‘𝑁) ∈ ℕ) |
30 | 29 | nnnn0d 12556 | . . 3 ⊢ (𝑁 ∈ ℕ → (seq1( · , 𝐹)‘𝑁) ∈ ℕ0) |
31 | nnnn0 12503 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
32 | pc11 16842 | . . 3 ⊢ (((seq1( · , 𝐹)‘𝑁) ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → ((seq1( · , 𝐹)‘𝑁) = 𝑁 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (seq1( · , 𝐹)‘𝑁)) = (𝑝 pCnt 𝑁))) | |
33 | 30, 31, 32 | syl2anc 583 | . 2 ⊢ (𝑁 ∈ ℕ → ((seq1( · , 𝐹)‘𝑁) = 𝑁 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (seq1( · , 𝐹)‘𝑁)) = (𝑝 pCnt 𝑁))) |
34 | 25, 33 | mpbird 257 | 1 ⊢ (𝑁 ∈ ℕ → (seq1( · , 𝐹)‘𝑁) = 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∀wral 3057 ifcif 4524 class class class wbr 5142 ↦ cmpt 5225 ⟶wf 6538 ‘cfv 6542 (class class class)co 7414 0cc0 11132 1c1 11133 · cmul 11137 ≤ cle 11273 ℕcn 12236 ℕ0cn0 12496 ℤcz 12582 seqcseq 13992 ↑cexp 14052 ∥ cdvds 16224 ℙcprime 16635 pCnt cpc 16798 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 ax-pre-sup 11210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-sup 9459 df-inf 9460 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-div 11896 df-nn 12237 df-2 12299 df-3 12300 df-n0 12497 df-z 12583 df-uz 12847 df-q 12957 df-rp 13001 df-fz 13511 df-fl 13783 df-mod 13861 df-seq 13993 df-exp 14053 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-dvds 16225 df-gcd 16463 df-prm 16636 df-pc 16799 |
This theorem is referenced by: pclogsum 27141 |
Copyright terms: Public domain | W3C validator |