MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcprod Structured version   Visualization version   GIF version

Theorem pcprod 16857
Description: The product of the primes taken to their respective powers reconstructs the original number. (Contributed by Mario Carneiro, 12-Mar-2014.)
Hypothesis
Ref Expression
pcprod.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝑁)), 1))
Assertion
Ref Expression
pcprod (𝑁 ∈ ℕ → (seq1( · , 𝐹)‘𝑁) = 𝑁)
Distinct variable group:   𝑛,𝑁
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem pcprod
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 pcprod.1 . . . . . 6 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝑁)), 1))
2 pccl 16811 . . . . . . . . 9 ((𝑛 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑛 pCnt 𝑁) ∈ ℕ0)
32ancoms 458 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℙ) → (𝑛 pCnt 𝑁) ∈ ℕ0)
43ralrimiva 3142 . . . . . . 7 (𝑁 ∈ ℕ → ∀𝑛 ∈ ℙ (𝑛 pCnt 𝑁) ∈ ℕ0)
54adantl 481 . . . . . 6 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ∀𝑛 ∈ ℙ (𝑛 pCnt 𝑁) ∈ ℕ0)
6 simpr 484 . . . . . 6 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
7 simpl 482 . . . . . 6 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → 𝑝 ∈ ℙ)
8 oveq1 7421 . . . . . 6 (𝑛 = 𝑝 → (𝑛 pCnt 𝑁) = (𝑝 pCnt 𝑁))
91, 5, 6, 7, 8pcmpt 16854 . . . . 5 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑝 pCnt (seq1( · , 𝐹)‘𝑁)) = if(𝑝𝑁, (𝑝 pCnt 𝑁), 0))
10 iftrue 4530 . . . . . . 7 (𝑝𝑁 → if(𝑝𝑁, (𝑝 pCnt 𝑁), 0) = (𝑝 pCnt 𝑁))
1110adantl 481 . . . . . 6 (((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ 𝑝𝑁) → if(𝑝𝑁, (𝑝 pCnt 𝑁), 0) = (𝑝 pCnt 𝑁))
12 iffalse 4533 . . . . . . . 8 𝑝𝑁 → if(𝑝𝑁, (𝑝 pCnt 𝑁), 0) = 0)
1312adantl 481 . . . . . . 7 (((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑝𝑁) → if(𝑝𝑁, (𝑝 pCnt 𝑁), 0) = 0)
14 prmz 16639 . . . . . . . . . 10 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
15 dvdsle 16280 . . . . . . . . . 10 ((𝑝 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑝𝑁𝑝𝑁))
1614, 15sylan 579 . . . . . . . . 9 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑝𝑁𝑝𝑁))
1716con3dimp 408 . . . . . . . 8 (((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑝𝑁) → ¬ 𝑝𝑁)
18 pceq0 16833 . . . . . . . . 9 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ((𝑝 pCnt 𝑁) = 0 ↔ ¬ 𝑝𝑁))
1918adantr 480 . . . . . . . 8 (((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑝𝑁) → ((𝑝 pCnt 𝑁) = 0 ↔ ¬ 𝑝𝑁))
2017, 19mpbird 257 . . . . . . 7 (((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑝𝑁) → (𝑝 pCnt 𝑁) = 0)
2113, 20eqtr4d 2771 . . . . . 6 (((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑝𝑁) → if(𝑝𝑁, (𝑝 pCnt 𝑁), 0) = (𝑝 pCnt 𝑁))
2211, 21pm2.61dan 812 . . . . 5 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → if(𝑝𝑁, (𝑝 pCnt 𝑁), 0) = (𝑝 pCnt 𝑁))
239, 22eqtrd 2768 . . . 4 ((𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑝 pCnt (seq1( · , 𝐹)‘𝑁)) = (𝑝 pCnt 𝑁))
2423ancoms 458 . . 3 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (seq1( · , 𝐹)‘𝑁)) = (𝑝 pCnt 𝑁))
2524ralrimiva 3142 . 2 (𝑁 ∈ ℕ → ∀𝑝 ∈ ℙ (𝑝 pCnt (seq1( · , 𝐹)‘𝑁)) = (𝑝 pCnt 𝑁))
261, 4pcmptcl 16853 . . . . . 6 (𝑁 ∈ ℕ → (𝐹:ℕ⟶ℕ ∧ seq1( · , 𝐹):ℕ⟶ℕ))
2726simprd 495 . . . . 5 (𝑁 ∈ ℕ → seq1( · , 𝐹):ℕ⟶ℕ)
28 ffvelcdm 7085 . . . . 5 ((seq1( · , 𝐹):ℕ⟶ℕ ∧ 𝑁 ∈ ℕ) → (seq1( · , 𝐹)‘𝑁) ∈ ℕ)
2927, 28mpancom 687 . . . 4 (𝑁 ∈ ℕ → (seq1( · , 𝐹)‘𝑁) ∈ ℕ)
3029nnnn0d 12556 . . 3 (𝑁 ∈ ℕ → (seq1( · , 𝐹)‘𝑁) ∈ ℕ0)
31 nnnn0 12503 . . 3 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
32 pc11 16842 . . 3 (((seq1( · , 𝐹)‘𝑁) ∈ ℕ0𝑁 ∈ ℕ0) → ((seq1( · , 𝐹)‘𝑁) = 𝑁 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (seq1( · , 𝐹)‘𝑁)) = (𝑝 pCnt 𝑁)))
3330, 31, 32syl2anc 583 . 2 (𝑁 ∈ ℕ → ((seq1( · , 𝐹)‘𝑁) = 𝑁 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (seq1( · , 𝐹)‘𝑁)) = (𝑝 pCnt 𝑁)))
3425, 33mpbird 257 1 (𝑁 ∈ ℕ → (seq1( · , 𝐹)‘𝑁) = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  wral 3057  ifcif 4524   class class class wbr 5142  cmpt 5225  wf 6538  cfv 6542  (class class class)co 7414  0cc0 11132  1c1 11133   · cmul 11137  cle 11273  cn 12236  0cn0 12496  cz 12582  seqcseq 13992  cexp 14052  cdvds 16224  cprime 16635   pCnt cpc 16798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209  ax-pre-sup 11210
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9459  df-inf 9460  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-div 11896  df-nn 12237  df-2 12299  df-3 12300  df-n0 12497  df-z 12583  df-uz 12847  df-q 12957  df-rp 13001  df-fz 13511  df-fl 13783  df-mod 13861  df-seq 13993  df-exp 14053  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-dvds 16225  df-gcd 16463  df-prm 16636  df-pc 16799
This theorem is referenced by:  pclogsum  27141
  Copyright terms: Public domain W3C validator
OSZAR »