![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pfxccatpfx1 | Structured version Visualization version GIF version |
Description: A prefix of a concatenation being a prefix of the first concatenated word. (Contributed by AV, 10-May-2020.) |
Ref | Expression |
---|---|
swrdccatin2.l | ⊢ 𝐿 = (♯‘𝐴) |
Ref | Expression |
---|---|
pfxccatpfx1 | ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...𝐿)) → ((𝐴 ++ 𝐵) prefix 𝑁) = (𝐴 prefix 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpa 1146 | . . 3 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...𝐿)) → (𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉)) | |
2 | elfznn0 13620 | . . . . . 6 ⊢ (𝑁 ∈ (0...𝐿) → 𝑁 ∈ ℕ0) | |
3 | 0elfz 13624 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁)) | |
4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝑁 ∈ (0...𝐿) → 0 ∈ (0...𝑁)) |
5 | swrdccatin2.l | . . . . . . . 8 ⊢ 𝐿 = (♯‘𝐴) | |
6 | 5 | oveq2i 7425 | . . . . . . 7 ⊢ (0...𝐿) = (0...(♯‘𝐴)) |
7 | 6 | eleq2i 2821 | . . . . . 6 ⊢ (𝑁 ∈ (0...𝐿) ↔ 𝑁 ∈ (0...(♯‘𝐴))) |
8 | 7 | biimpi 215 | . . . . 5 ⊢ (𝑁 ∈ (0...𝐿) → 𝑁 ∈ (0...(♯‘𝐴))) |
9 | 4, 8 | jca 511 | . . . 4 ⊢ (𝑁 ∈ (0...𝐿) → (0 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) |
10 | 9 | 3ad2ant3 1133 | . . 3 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...𝐿)) → (0 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) |
11 | swrdccatin1 14701 | . . 3 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → ((0 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴))) → ((𝐴 ++ 𝐵) substr 〈0, 𝑁〉) = (𝐴 substr 〈0, 𝑁〉))) | |
12 | 1, 10, 11 | sylc 65 | . 2 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...𝐿)) → ((𝐴 ++ 𝐵) substr 〈0, 𝑁〉) = (𝐴 substr 〈0, 𝑁〉)) |
13 | ccatcl 14550 | . . . . 5 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → (𝐴 ++ 𝐵) ∈ Word 𝑉) | |
14 | 13 | 3adant3 1130 | . . . 4 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...𝐿)) → (𝐴 ++ 𝐵) ∈ Word 𝑉) |
15 | 2 | 3ad2ant3 1133 | . . . 4 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...𝐿)) → 𝑁 ∈ ℕ0) |
16 | 14, 15 | jca 511 | . . 3 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...𝐿)) → ((𝐴 ++ 𝐵) ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ0)) |
17 | pfxval 14649 | . . 3 ⊢ (((𝐴 ++ 𝐵) ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ0) → ((𝐴 ++ 𝐵) prefix 𝑁) = ((𝐴 ++ 𝐵) substr 〈0, 𝑁〉)) | |
18 | 16, 17 | syl 17 | . 2 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...𝐿)) → ((𝐴 ++ 𝐵) prefix 𝑁) = ((𝐴 ++ 𝐵) substr 〈0, 𝑁〉)) |
19 | pfxval 14649 | . . . 4 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝐴 prefix 𝑁) = (𝐴 substr 〈0, 𝑁〉)) | |
20 | 2, 19 | sylan2 592 | . . 3 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...𝐿)) → (𝐴 prefix 𝑁) = (𝐴 substr 〈0, 𝑁〉)) |
21 | 20 | 3adant2 1129 | . 2 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...𝐿)) → (𝐴 prefix 𝑁) = (𝐴 substr 〈0, 𝑁〉)) |
22 | 12, 18, 21 | 3eqtr4d 2778 | 1 ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...𝐿)) → ((𝐴 ++ 𝐵) prefix 𝑁) = (𝐴 prefix 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 〈cop 4630 ‘cfv 6542 (class class class)co 7414 0cc0 11132 ℕ0cn0 12496 ...cfz 13510 ♯chash 14315 Word cword 14490 ++ cconcat 14546 substr csubstr 14616 prefix cpfx 14646 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-card 9956 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-nn 12237 df-n0 12497 df-z 12583 df-uz 12847 df-fz 13511 df-fzo 13654 df-hash 14316 df-word 14491 df-concat 14547 df-substr 14617 df-pfx 14647 |
This theorem is referenced by: pfxccat3a 14714 pfxccatid 14717 |
Copyright terms: Public domain | W3C validator |