![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pimconstlt0 | Structured version Visualization version GIF version |
Description: Given a constant function, its preimage with respect to an unbounded below, open interval, with upper bound less than or equal to the constant, is the empty set. Second part of Proposition 121E (a) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
pimconstlt0.x | ⊢ Ⅎ𝑥𝜑 |
pimconstlt0.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
pimconstlt0.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
pimconstlt0.c | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
pimconstlt0.l | ⊢ (𝜑 → 𝐶 ≤ 𝐵) |
Ref | Expression |
---|---|
pimconstlt0 | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐶} = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pimconstlt0.x | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | pimconstlt0.l | . . . . . . 7 ⊢ (𝜑 → 𝐶 ≤ 𝐵) | |
3 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ≤ 𝐵) |
4 | pimconstlt0.f | . . . . . . . 8 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
5 | 4 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
6 | pimconstlt0.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
7 | 6 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
8 | 5, 7 | fvmpt2d 7012 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) |
9 | 3, 8 | breqtrrd 5170 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ≤ (𝐹‘𝑥)) |
10 | pimconstlt0.c | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
11 | 10 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℝ*) |
12 | 8, 7 | eqeltrd 2829 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ℝ) |
13 | 12 | rexrd 11288 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ℝ*) |
14 | 11, 13 | xrlenltd 11304 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐶 ≤ (𝐹‘𝑥) ↔ ¬ (𝐹‘𝑥) < 𝐶)) |
15 | 9, 14 | mpbid 231 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ¬ (𝐹‘𝑥) < 𝐶) |
16 | 15 | ex 412 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → ¬ (𝐹‘𝑥) < 𝐶)) |
17 | 1, 16 | ralrimi 3250 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ¬ (𝐹‘𝑥) < 𝐶) |
18 | rabeq0 4380 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐶} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ (𝐹‘𝑥) < 𝐶) | |
19 | 17, 18 | sylibr 233 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐶} = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1534 Ⅎwnf 1778 ∈ wcel 2099 ∀wral 3057 {crab 3428 ∅c0 4318 class class class wbr 5142 ↦ cmpt 5225 ‘cfv 6542 ℝcr 11131 ℝ*cxr 11271 < clt 11272 ≤ cle 11273 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fv 6550 df-xr 11276 df-le 11278 |
This theorem is referenced by: smfconst 46131 |
Copyright terms: Public domain | W3C validator |