MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmpt2d Structured version   Visualization version   GIF version

Theorem fvmpt2d 7012
Description: Deduction version of fvmpt2 7010. (Contributed by Thierry Arnoux, 8-Dec-2016.)
Hypotheses
Ref Expression
fvmpt2d.1 (𝜑𝐹 = (𝑥𝐴𝐵))
fvmpt2d.4 ((𝜑𝑥𝐴) → 𝐵𝑉)
Assertion
Ref Expression
fvmpt2d ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem fvmpt2d
StepHypRef Expression
1 fvmpt2d.1 . . . 4 (𝜑𝐹 = (𝑥𝐴𝐵))
21fveq1d 6893 . . 3 (𝜑 → (𝐹𝑥) = ((𝑥𝐴𝐵)‘𝑥))
32adantr 480 . 2 ((𝜑𝑥𝐴) → (𝐹𝑥) = ((𝑥𝐴𝐵)‘𝑥))
4 id 22 . . 3 (𝑥𝐴𝑥𝐴)
5 fvmpt2d.4 . . 3 ((𝜑𝑥𝐴) → 𝐵𝑉)
6 eqid 2728 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
76fvmpt2 7010 . . 3 ((𝑥𝐴𝐵𝑉) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
84, 5, 7syl2an2 685 . 2 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
93, 8eqtrd 2768 1 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  cmpt 5225  cfv 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fv 6550
This theorem is referenced by:  cantnflem1  9706  ghmquskerco  19228  frlmphl  21708  neiptopreu  23030  rrxds  25314  ofoprabco  32443  suppovss  32458  tocycf  32832  ply1moneq  33254  fedgmullem2  33318  esumcvg  33699  ofcfval2  33717  eulerpartgbij  33986  dstrvprob  34085  itgexpif  34232  hgt750lemb  34282  aks6d1c6lem4  41639  frlmsnic  41764  cvgdvgrat  43744  radcnvrat  43745  binomcxplemnotnn0  43787  fmuldfeqlem1  44964  climreclmpt  45066  climinfmpt  45097  limsupubuzmpt  45101  limsupre2mpt  45112  limsupre3mpt  45116  limsupreuzmpt  45121  liminfvalxrmpt  45168  liminflbuz2  45197  cncficcgt0  45270  dvdivbd  45305  dvnmul  45325  dvnprodlem1  45328  dvnprodlem2  45329  stoweidlem42  45424  dirkeritg  45484  elaa2lem  45615  etransclem4  45620  ioorrnopnxrlem  45688  subsaliuncllem  45739  meaiuninclem  45862  meaiininclem  45868  ovnhoilem1  45983  ovncvr2  45993  ovolval4lem1  46031  iccvonmbllem  46060  vonioolem1  46062  vonioolem2  46063  vonicclem1  46065  vonicclem2  46066  pimconstlt0  46083  pimconstlt1  46084  smfpimltmpt  46128  issmfdmpt  46130  smfaddlem2  46146  smflimlem2  46154  smflimlem4  46156  smfpimgtmpt  46163  smfmullem4  46176  smfpimcclem  46189  smfsuplem1  46193  smfsupmpt  46197  smfinfmpt  46201  smflimsuplem2  46203  smflimsuplem3  46204  smflimsuplem4  46205  fsupdm  46224  finfdm  46228
  Copyright terms: Public domain W3C validator
OSZAR »