Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupreuzmpt Structured version   Visualization version   GIF version

Theorem limsupreuzmpt 45121
Description: Given a function on the reals, defined on a set of upper integers, its supremum limit is real if and only if two condition holds: 1. there is a real number that is less than or equal to the function, infinitely often; 2. there is a real number that is greater than or equal to the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupreuzmpt.j 𝑗𝜑
limsupreuzmpt.m (𝜑𝑀 ∈ ℤ)
limsupreuzmpt.z 𝑍 = (ℤ𝑀)
limsupreuzmpt.b ((𝜑𝑗𝑍) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
limsupreuzmpt (𝜑 → ((lim sup‘(𝑗𝑍𝐵)) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥𝐵 ∧ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥)))
Distinct variable groups:   𝐵,𝑘,𝑥   𝑗,𝑍,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑗,𝑘)   𝐵(𝑗)   𝑀(𝑥,𝑗,𝑘)

Proof of Theorem limsupreuzmpt
Dummy variables 𝑖 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfmpt1 5250 . . 3 𝑗(𝑗𝑍𝐵)
2 limsupreuzmpt.m . . 3 (𝜑𝑀 ∈ ℤ)
3 limsupreuzmpt.z . . 3 𝑍 = (ℤ𝑀)
4 limsupreuzmpt.j . . . 4 𝑗𝜑
5 limsupreuzmpt.b . . . 4 ((𝜑𝑗𝑍) → 𝐵 ∈ ℝ)
64, 5fmptd2f 44603 . . 3 (𝜑 → (𝑗𝑍𝐵):𝑍⟶ℝ)
71, 2, 3, 6limsupreuz 45119 . 2 (𝜑 → ((lim sup‘(𝑗𝑍𝐵)) ∈ ℝ ↔ (∃𝑦 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑦 ≤ ((𝑗𝑍𝐵)‘𝑗) ∧ ∃𝑦 ∈ ℝ ∀𝑗𝑍 ((𝑗𝑍𝐵)‘𝑗) ≤ 𝑦)))
8 nfv 1910 . . . . . . . 8 𝑗 𝑖𝑍
94, 8nfan 1895 . . . . . . 7 𝑗(𝜑𝑖𝑍)
10 simpll 766 . . . . . . . . 9 (((𝜑𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) → 𝜑)
113uztrn2 12865 . . . . . . . . . 10 ((𝑖𝑍𝑗 ∈ (ℤ𝑖)) → 𝑗𝑍)
1211adantll 713 . . . . . . . . 9 (((𝜑𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) → 𝑗𝑍)
13 eqid 2728 . . . . . . . . . . 11 (𝑗𝑍𝐵) = (𝑗𝑍𝐵)
1413a1i 11 . . . . . . . . . 10 (𝜑 → (𝑗𝑍𝐵) = (𝑗𝑍𝐵))
1514, 5fvmpt2d 7012 . . . . . . . . 9 ((𝜑𝑗𝑍) → ((𝑗𝑍𝐵)‘𝑗) = 𝐵)
1610, 12, 15syl2anc 583 . . . . . . . 8 (((𝜑𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) → ((𝑗𝑍𝐵)‘𝑗) = 𝐵)
1716breq2d 5154 . . . . . . 7 (((𝜑𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) → (𝑦 ≤ ((𝑗𝑍𝐵)‘𝑗) ↔ 𝑦𝐵))
189, 17rexbida 3265 . . . . . 6 ((𝜑𝑖𝑍) → (∃𝑗 ∈ (ℤ𝑖)𝑦 ≤ ((𝑗𝑍𝐵)‘𝑗) ↔ ∃𝑗 ∈ (ℤ𝑖)𝑦𝐵))
1918ralbidva 3171 . . . . 5 (𝜑 → (∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑦 ≤ ((𝑗𝑍𝐵)‘𝑗) ↔ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑦𝐵))
2019rexbidv 3174 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑦 ≤ ((𝑗𝑍𝐵)‘𝑗) ↔ ∃𝑦 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑦𝐵))
21 breq1 5145 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑦𝐵𝑥𝐵))
2221rexbidv 3174 . . . . . . . 8 (𝑦 = 𝑥 → (∃𝑗 ∈ (ℤ𝑖)𝑦𝐵 ↔ ∃𝑗 ∈ (ℤ𝑖)𝑥𝐵))
2322ralbidv 3173 . . . . . . 7 (𝑦 = 𝑥 → (∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑦𝐵 ↔ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑥𝐵))
24 fveq2 6891 . . . . . . . . . 10 (𝑖 = 𝑘 → (ℤ𝑖) = (ℤ𝑘))
2524rexeqdv 3322 . . . . . . . . 9 (𝑖 = 𝑘 → (∃𝑗 ∈ (ℤ𝑖)𝑥𝐵 ↔ ∃𝑗 ∈ (ℤ𝑘)𝑥𝐵))
2625cbvralvw 3230 . . . . . . . 8 (∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑥𝐵 ↔ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥𝐵)
2726a1i 11 . . . . . . 7 (𝑦 = 𝑥 → (∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑥𝐵 ↔ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥𝐵))
2823, 27bitrd 279 . . . . . 6 (𝑦 = 𝑥 → (∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑦𝐵 ↔ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥𝐵))
2928cbvrexvw 3231 . . . . 5 (∃𝑦 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑦𝐵 ↔ ∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥𝐵)
3029a1i 11 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑦𝐵 ↔ ∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥𝐵))
3120, 30bitrd 279 . . 3 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑦 ≤ ((𝑗𝑍𝐵)‘𝑗) ↔ ∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥𝐵))
3215breq1d 5152 . . . . . 6 ((𝜑𝑗𝑍) → (((𝑗𝑍𝐵)‘𝑗) ≤ 𝑦𝐵𝑦))
334, 32ralbida 3263 . . . . 5 (𝜑 → (∀𝑗𝑍 ((𝑗𝑍𝐵)‘𝑗) ≤ 𝑦 ↔ ∀𝑗𝑍 𝐵𝑦))
3433rexbidv 3174 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑗𝑍 ((𝑗𝑍𝐵)‘𝑗) ≤ 𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑗𝑍 𝐵𝑦))
35 breq2 5146 . . . . . . 7 (𝑦 = 𝑥 → (𝐵𝑦𝐵𝑥))
3635ralbidv 3173 . . . . . 6 (𝑦 = 𝑥 → (∀𝑗𝑍 𝐵𝑦 ↔ ∀𝑗𝑍 𝐵𝑥))
3736cbvrexvw 3231 . . . . 5 (∃𝑦 ∈ ℝ ∀𝑗𝑍 𝐵𝑦 ↔ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥)
3837a1i 11 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑗𝑍 𝐵𝑦 ↔ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥))
3934, 38bitrd 279 . . 3 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑗𝑍 ((𝑗𝑍𝐵)‘𝑗) ≤ 𝑦 ↔ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥))
4031, 39anbi12d 631 . 2 (𝜑 → ((∃𝑦 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑦 ≤ ((𝑗𝑍𝐵)‘𝑗) ∧ ∃𝑦 ∈ ℝ ∀𝑗𝑍 ((𝑗𝑍𝐵)‘𝑗) ≤ 𝑦) ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥𝐵 ∧ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥)))
417, 40bitrd 279 1 (𝜑 → ((lim sup‘(𝑗𝑍𝐵)) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥𝐵 ∧ ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝐵𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wnf 1778  wcel 2099  wral 3057  wrex 3066   class class class wbr 5142  cmpt 5225  cfv 6542  cr 11131  cle 11273  cz 12582  cuz 12846  lim supclsp 15440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209  ax-pre-sup 11210
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9459  df-inf 9460  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-nn 12237  df-n0 12497  df-z 12583  df-uz 12847  df-ico 13356  df-fz 13511  df-fzo 13654  df-fl 13783  df-ceil 13784  df-limsup 15441
This theorem is referenced by:  liminfreuzlem  45184
  Copyright terms: Public domain W3C validator
OSZAR »