Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfsuplem1 Structured version   Visualization version   GIF version

Theorem smfsuplem1 46193
Description: The supremum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (b) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smfsuplem1.m (𝜑𝑀 ∈ ℤ)
smfsuplem1.z 𝑍 = (ℤ𝑀)
smfsuplem1.s (𝜑𝑆 ∈ SAlg)
smfsuplem1.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smfsuplem1.d 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
smfsuplem1.g 𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
smfsuplem1.a (𝜑𝐴 ∈ ℝ)
smfsuplem1.h (𝜑𝐻:𝑍𝑆)
smfsuplem1.i ((𝜑𝑛𝑍) → ((𝐹𝑛) “ (-∞(,]𝐴)) = ((𝐻𝑛) ∩ dom (𝐹𝑛)))
Assertion
Ref Expression
smfsuplem1 (𝜑 → (𝐺 “ (-∞(,]𝐴)) ∈ (𝑆t 𝐷))
Distinct variable groups:   𝐴,𝑛,𝑥   𝐷,𝑛,𝑥,𝑦   𝑥,𝐹,𝑦   𝑛,𝐺,𝑥   𝑛,𝐻,𝑥,𝑦   𝑛,𝑀   𝑆,𝑛   𝑛,𝑍,𝑥,𝑦   𝜑,𝑛,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝑆(𝑥,𝑦)   𝐹(𝑛)   𝐺(𝑦)   𝑀(𝑥,𝑦)

Proof of Theorem smfsuplem1
StepHypRef Expression
1 smfsuplem1.s . . . . . . . . . . . . 13 (𝜑𝑆 ∈ SAlg)
21adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → 𝑆 ∈ SAlg)
3 smfsuplem1.f . . . . . . . . . . . . 13 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
43ffvelcdmda 7088 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ (SMblFn‘𝑆))
5 eqid 2728 . . . . . . . . . . . 12 dom (𝐹𝑛) = dom (𝐹𝑛)
62, 4, 5smff 46114 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ)
76ffnd 6717 . . . . . . . . . 10 ((𝜑𝑛𝑍) → (𝐹𝑛) Fn dom (𝐹𝑛))
87adantr 480 . . . . . . . . 9 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → (𝐹𝑛) Fn dom (𝐹𝑛))
9 smfsuplem1.d . . . . . . . . . . . . 13 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
10 ssrab2 4073 . . . . . . . . . . . . 13 {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦} ⊆ 𝑛𝑍 dom (𝐹𝑛)
119, 10eqsstri 4012 . . . . . . . . . . . 12 𝐷 𝑛𝑍 dom (𝐹𝑛)
12 iinss2 5054 . . . . . . . . . . . 12 (𝑛𝑍 𝑛𝑍 dom (𝐹𝑛) ⊆ dom (𝐹𝑛))
1311, 12sstrid 3989 . . . . . . . . . . 11 (𝑛𝑍𝐷 ⊆ dom (𝐹𝑛))
1413ad2antlr 726 . . . . . . . . . 10 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → 𝐷 ⊆ dom (𝐹𝑛))
15 cnvimass 6079 . . . . . . . . . . . . 13 (𝐺 “ (-∞(,]𝐴)) ⊆ dom 𝐺
1615sseli 3974 . . . . . . . . . . . 12 (𝑥 ∈ (𝐺 “ (-∞(,]𝐴)) → 𝑥 ∈ dom 𝐺)
1716adantl 481 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → 𝑥 ∈ dom 𝐺)
18 nfv 1910 . . . . . . . . . . . . . . 15 𝑛(𝜑𝑥𝐷)
19 smfsuplem1.m . . . . . . . . . . . . . . . . . . 19 (𝜑𝑀 ∈ ℤ)
20 uzid 12861 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
2119, 20syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝑀 ∈ (ℤ𝑀))
22 smfsuplem1.z . . . . . . . . . . . . . . . . . 18 𝑍 = (ℤ𝑀)
2321, 22eleqtrrdi 2840 . . . . . . . . . . . . . . . . 17 (𝜑𝑀𝑍)
2423ne0d 4331 . . . . . . . . . . . . . . . 16 (𝜑𝑍 ≠ ∅)
2524adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐷) → 𝑍 ≠ ∅)
266adantlr 714 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ)
2712adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑥𝐷𝑛𝑍) → 𝑛𝑍 dom (𝐹𝑛) ⊆ dom (𝐹𝑛))
2811sseli 3974 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐷𝑥 𝑛𝑍 dom (𝐹𝑛))
2928adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑥𝐷𝑛𝑍) → 𝑥 𝑛𝑍 dom (𝐹𝑛))
3027, 29sseldd 3979 . . . . . . . . . . . . . . . . 17 ((𝑥𝐷𝑛𝑍) → 𝑥 ∈ dom (𝐹𝑛))
3130adantll 713 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → 𝑥 ∈ dom (𝐹𝑛))
3226, 31ffvelcdmd 7089 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
339reqabi 3450 . . . . . . . . . . . . . . . . 17 (𝑥𝐷 ↔ (𝑥 𝑛𝑍 dom (𝐹𝑛) ∧ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦))
3433simprbi 496 . . . . . . . . . . . . . . . 16 (𝑥𝐷 → ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦)
3534adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐷) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦)
3618, 25, 32, 35suprclrnmpt 44621 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐷) → sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ) ∈ ℝ)
37 smfsuplem1.g . . . . . . . . . . . . . 14 𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
3836, 37fmptd 7118 . . . . . . . . . . . . 13 (𝜑𝐺:𝐷⟶ℝ)
3938fdmd 6727 . . . . . . . . . . . 12 (𝜑 → dom 𝐺 = 𝐷)
4039ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → dom 𝐺 = 𝐷)
4117, 40eleqtrd 2831 . . . . . . . . . 10 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → 𝑥𝐷)
4214, 41sseldd 3979 . . . . . . . . 9 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → 𝑥 ∈ dom (𝐹𝑛))
43 mnfxr 11295 . . . . . . . . . . 11 -∞ ∈ ℝ*
4443a1i 11 . . . . . . . . . 10 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → -∞ ∈ ℝ*)
45 smfsuplem1.a . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ)
4645rexrd 11288 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ*)
4746ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → 𝐴 ∈ ℝ*)
4832an32s 651 . . . . . . . . . . . 12 (((𝜑𝑛𝑍) ∧ 𝑥𝐷) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
4941, 48syldan 590 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
5049rexrd 11288 . . . . . . . . . 10 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → ((𝐹𝑛)‘𝑥) ∈ ℝ*)
5149mnfltd 13130 . . . . . . . . . 10 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → -∞ < ((𝐹𝑛)‘𝑥))
5216adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → 𝑥 ∈ dom 𝐺)
5338ffdmd 6748 . . . . . . . . . . . . . 14 (𝜑𝐺:dom 𝐺⟶ℝ)
5453ffvelcdmda 7088 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ dom 𝐺) → (𝐺𝑥) ∈ ℝ)
5552, 54syldan 590 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → (𝐺𝑥) ∈ ℝ)
5655adantlr 714 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → (𝐺𝑥) ∈ ℝ)
5745ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → 𝐴 ∈ ℝ)
58 an32 645 . . . . . . . . . . . . . . 15 (((𝜑𝑛𝑍) ∧ 𝑥𝐷) ↔ ((𝜑𝑥𝐷) ∧ 𝑛𝑍))
5958biimpi 215 . . . . . . . . . . . . . 14 (((𝜑𝑛𝑍) ∧ 𝑥𝐷) → ((𝜑𝑥𝐷) ∧ 𝑛𝑍))
6018, 32, 35suprubrnmpt 44623 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ≤ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
6159, 60syl 17 . . . . . . . . . . . . 13 (((𝜑𝑛𝑍) ∧ 𝑥𝐷) → ((𝐹𝑛)‘𝑥) ≤ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
6237a1i 11 . . . . . . . . . . . . . . 15 (𝜑𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < )))
6362, 36fvmpt2d 7012 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐷) → (𝐺𝑥) = sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
6463adantlr 714 . . . . . . . . . . . . 13 (((𝜑𝑛𝑍) ∧ 𝑥𝐷) → (𝐺𝑥) = sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
6561, 64breqtrrd 5170 . . . . . . . . . . . 12 (((𝜑𝑛𝑍) ∧ 𝑥𝐷) → ((𝐹𝑛)‘𝑥) ≤ (𝐺𝑥))
6641, 65syldan 590 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → ((𝐹𝑛)‘𝑥) ≤ (𝐺𝑥))
6743a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → -∞ ∈ ℝ*)
6846adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → 𝐴 ∈ ℝ*)
69 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → 𝑥 ∈ (𝐺 “ (-∞(,]𝐴)))
7038ffnd 6717 . . . . . . . . . . . . . . . . 17 (𝜑𝐺 Fn 𝐷)
71 elpreima 7061 . . . . . . . . . . . . . . . . 17 (𝐺 Fn 𝐷 → (𝑥 ∈ (𝐺 “ (-∞(,]𝐴)) ↔ (𝑥𝐷 ∧ (𝐺𝑥) ∈ (-∞(,]𝐴))))
7270, 71syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥 ∈ (𝐺 “ (-∞(,]𝐴)) ↔ (𝑥𝐷 ∧ (𝐺𝑥) ∈ (-∞(,]𝐴))))
7372adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → (𝑥 ∈ (𝐺 “ (-∞(,]𝐴)) ↔ (𝑥𝐷 ∧ (𝐺𝑥) ∈ (-∞(,]𝐴))))
7469, 73mpbid 231 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → (𝑥𝐷 ∧ (𝐺𝑥) ∈ (-∞(,]𝐴)))
7574simprd 495 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → (𝐺𝑥) ∈ (-∞(,]𝐴))
7667, 68, 75iocleubd 44938 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → (𝐺𝑥) ≤ 𝐴)
7776adantlr 714 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → (𝐺𝑥) ≤ 𝐴)
7849, 56, 57, 66, 77letrd 11395 . . . . . . . . . 10 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → ((𝐹𝑛)‘𝑥) ≤ 𝐴)
7944, 47, 50, 51, 78eliocd 44886 . . . . . . . . 9 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → ((𝐹𝑛)‘𝑥) ∈ (-∞(,]𝐴))
808, 42, 79elpreimad 7062 . . . . . . . 8 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → 𝑥 ∈ ((𝐹𝑛) “ (-∞(,]𝐴)))
8180ssd 44440 . . . . . . 7 ((𝜑𝑛𝑍) → (𝐺 “ (-∞(,]𝐴)) ⊆ ((𝐹𝑛) “ (-∞(,]𝐴)))
82 smfsuplem1.i . . . . . . . 8 ((𝜑𝑛𝑍) → ((𝐹𝑛) “ (-∞(,]𝐴)) = ((𝐻𝑛) ∩ dom (𝐹𝑛)))
83 inss1 4224 . . . . . . . 8 ((𝐻𝑛) ∩ dom (𝐹𝑛)) ⊆ (𝐻𝑛)
8482, 83eqsstrdi 4032 . . . . . . 7 ((𝜑𝑛𝑍) → ((𝐹𝑛) “ (-∞(,]𝐴)) ⊆ (𝐻𝑛))
8581, 84sstrd 3988 . . . . . 6 ((𝜑𝑛𝑍) → (𝐺 “ (-∞(,]𝐴)) ⊆ (𝐻𝑛))
8685ralrimiva 3142 . . . . 5 (𝜑 → ∀𝑛𝑍 (𝐺 “ (-∞(,]𝐴)) ⊆ (𝐻𝑛))
87 ssiin 5052 . . . . 5 ((𝐺 “ (-∞(,]𝐴)) ⊆ 𝑛𝑍 (𝐻𝑛) ↔ ∀𝑛𝑍 (𝐺 “ (-∞(,]𝐴)) ⊆ (𝐻𝑛))
8886, 87sylibr 233 . . . 4 (𝜑 → (𝐺 “ (-∞(,]𝐴)) ⊆ 𝑛𝑍 (𝐻𝑛))
8915, 38fssdm 6736 . . . 4 (𝜑 → (𝐺 “ (-∞(,]𝐴)) ⊆ 𝐷)
9088, 89ssind 4228 . . 3 (𝜑 → (𝐺 “ (-∞(,]𝐴)) ⊆ ( 𝑛𝑍 (𝐻𝑛) ∩ 𝐷))
91 iniin1 44485 . . . . 5 (𝑍 ≠ ∅ → ( 𝑛𝑍 (𝐻𝑛) ∩ 𝐷) = 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷))
9224, 91syl 17 . . . 4 (𝜑 → ( 𝑛𝑍 (𝐻𝑛) ∩ 𝐷) = 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷))
9370adantr 480 . . . . . 6 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → 𝐺 Fn 𝐷)
94 simpr 484 . . . . . . . 8 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → 𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷))
9523adantr 480 . . . . . . . 8 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → 𝑀𝑍)
96 fveq2 6891 . . . . . . . . . 10 (𝑛 = 𝑀 → (𝐻𝑛) = (𝐻𝑀))
9796ineq1d 4207 . . . . . . . . 9 (𝑛 = 𝑀 → ((𝐻𝑛) ∩ 𝐷) = ((𝐻𝑀) ∩ 𝐷))
9897eleq2d 2815 . . . . . . . 8 (𝑛 = 𝑀 → (𝑥 ∈ ((𝐻𝑛) ∩ 𝐷) ↔ 𝑥 ∈ ((𝐻𝑀) ∩ 𝐷)))
9994, 95, 98eliind 44429 . . . . . . 7 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → 𝑥 ∈ ((𝐻𝑀) ∩ 𝐷))
100 elinel2 4192 . . . . . . 7 (𝑥 ∈ ((𝐻𝑀) ∩ 𝐷) → 𝑥𝐷)
10199, 100syl 17 . . . . . 6 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → 𝑥𝐷)
10243a1i 11 . . . . . . 7 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → -∞ ∈ ℝ*)
10346adantr 480 . . . . . . 7 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → 𝐴 ∈ ℝ*)
10463, 36eqeltrd 2829 . . . . . . . . 9 ((𝜑𝑥𝐷) → (𝐺𝑥) ∈ ℝ)
105104rexrd 11288 . . . . . . . 8 ((𝜑𝑥𝐷) → (𝐺𝑥) ∈ ℝ*)
106101, 105syldan 590 . . . . . . 7 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → (𝐺𝑥) ∈ ℝ*)
107100adantl 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐻𝑀) ∩ 𝐷)) → 𝑥𝐷)
108107, 104syldan 590 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐻𝑀) ∩ 𝐷)) → (𝐺𝑥) ∈ ℝ)
109108mnfltd 13130 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐻𝑀) ∩ 𝐷)) → -∞ < (𝐺𝑥))
11099, 109syldan 590 . . . . . . 7 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → -∞ < (𝐺𝑥))
111101, 63syldan 590 . . . . . . . 8 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → (𝐺𝑥) = sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
112 nfv 1910 . . . . . . . . . . 11 𝑛𝜑
113 nfcv 2899 . . . . . . . . . . . 12 𝑛𝑥
114 nfii1 5026 . . . . . . . . . . . 12 𝑛 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)
115113, 114nfel 2913 . . . . . . . . . . 11 𝑛 𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)
116112, 115nfan 1895 . . . . . . . . . 10 𝑛(𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷))
117 simpll 766 . . . . . . . . . . . 12 (((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) ∧ 𝑛𝑍) → 𝜑)
118 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) ∧ 𝑛𝑍) → 𝑛𝑍)
119 eliinid 44471 . . . . . . . . . . . . 13 ((𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷) ∧ 𝑛𝑍) → 𝑥 ∈ ((𝐻𝑛) ∩ 𝐷))
120119adantll 713 . . . . . . . . . . . 12 (((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) ∧ 𝑛𝑍) → 𝑥 ∈ ((𝐻𝑛) ∩ 𝐷))
121 elinel1 4191 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((𝐻𝑛) ∩ 𝐷) → 𝑥 ∈ (𝐻𝑛))
1221213ad2ant3 1133 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝑍𝑥 ∈ ((𝐻𝑛) ∩ 𝐷)) → 𝑥 ∈ (𝐻𝑛))
123 elinel2 4192 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ((𝐻𝑛) ∩ 𝐷) → 𝑥𝐷)
124123adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑛𝑍𝑥 ∈ ((𝐻𝑛) ∩ 𝐷)) → 𝑥𝐷)
12530ancoms 458 . . . . . . . . . . . . . . . . 17 ((𝑛𝑍𝑥𝐷) → 𝑥 ∈ dom (𝐹𝑛))
126124, 125syldan 590 . . . . . . . . . . . . . . . 16 ((𝑛𝑍𝑥 ∈ ((𝐻𝑛) ∩ 𝐷)) → 𝑥 ∈ dom (𝐹𝑛))
1271263adant1 1128 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝑍𝑥 ∈ ((𝐻𝑛) ∩ 𝐷)) → 𝑥 ∈ dom (𝐹𝑛))
128122, 127elind 4190 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍𝑥 ∈ ((𝐻𝑛) ∩ 𝐷)) → 𝑥 ∈ ((𝐻𝑛) ∩ dom (𝐹𝑛)))
129823adant3 1130 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍𝑥 ∈ ((𝐻𝑛) ∩ 𝐷)) → ((𝐹𝑛) “ (-∞(,]𝐴)) = ((𝐻𝑛) ∩ dom (𝐹𝑛)))
130128, 129eleqtrrd 2832 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍𝑥 ∈ ((𝐻𝑛) ∩ 𝐷)) → 𝑥 ∈ ((𝐹𝑛) “ (-∞(,]𝐴)))
13143a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍𝑥 ∈ ((𝐹𝑛) “ (-∞(,]𝐴))) → -∞ ∈ ℝ*)
132463ad2ant1 1131 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍𝑥 ∈ ((𝐹𝑛) “ (-∞(,]𝐴))) → 𝐴 ∈ ℝ*)
133 simp3 1136 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍𝑥 ∈ ((𝐹𝑛) “ (-∞(,]𝐴))) → 𝑥 ∈ ((𝐹𝑛) “ (-∞(,]𝐴)))
134 elpreima 7061 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑛) Fn dom (𝐹𝑛) → (𝑥 ∈ ((𝐹𝑛) “ (-∞(,]𝐴)) ↔ (𝑥 ∈ dom (𝐹𝑛) ∧ ((𝐹𝑛)‘𝑥) ∈ (-∞(,]𝐴))))
1357, 134syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝑍) → (𝑥 ∈ ((𝐹𝑛) “ (-∞(,]𝐴)) ↔ (𝑥 ∈ dom (𝐹𝑛) ∧ ((𝐹𝑛)‘𝑥) ∈ (-∞(,]𝐴))))
1361353adant3 1130 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍𝑥 ∈ ((𝐹𝑛) “ (-∞(,]𝐴))) → (𝑥 ∈ ((𝐹𝑛) “ (-∞(,]𝐴)) ↔ (𝑥 ∈ dom (𝐹𝑛) ∧ ((𝐹𝑛)‘𝑥) ∈ (-∞(,]𝐴))))
137133, 136mpbid 231 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝑍𝑥 ∈ ((𝐹𝑛) “ (-∞(,]𝐴))) → (𝑥 ∈ dom (𝐹𝑛) ∧ ((𝐹𝑛)‘𝑥) ∈ (-∞(,]𝐴)))
138137simprd 495 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍𝑥 ∈ ((𝐹𝑛) “ (-∞(,]𝐴))) → ((𝐹𝑛)‘𝑥) ∈ (-∞(,]𝐴))
139131, 132, 138iocleubd 44938 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍𝑥 ∈ ((𝐹𝑛) “ (-∞(,]𝐴))) → ((𝐹𝑛)‘𝑥) ≤ 𝐴)
140130, 139syld3an3 1407 . . . . . . . . . . . 12 ((𝜑𝑛𝑍𝑥 ∈ ((𝐻𝑛) ∩ 𝐷)) → ((𝐹𝑛)‘𝑥) ≤ 𝐴)
141117, 118, 120, 140syl3anc 1369 . . . . . . . . . . 11 (((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ≤ 𝐴)
142141ex 412 . . . . . . . . . 10 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → (𝑛𝑍 → ((𝐹𝑛)‘𝑥) ≤ 𝐴))
143116, 142ralrimi 3250 . . . . . . . . 9 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝐴)
14424adantr 480 . . . . . . . . . 10 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → 𝑍 ≠ ∅)
145101, 32syldanl 601 . . . . . . . . . 10 (((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
146101, 34syl 17 . . . . . . . . . 10 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦)
14745adantr 480 . . . . . . . . . 10 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → 𝐴 ∈ ℝ)
148116, 144, 145, 146, 147suprleubrnmpt 44798 . . . . . . . . 9 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → (sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ) ≤ 𝐴 ↔ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝐴))
149143, 148mpbird 257 . . . . . . . 8 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ) ≤ 𝐴)
150111, 149eqbrtrd 5164 . . . . . . 7 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → (𝐺𝑥) ≤ 𝐴)
151102, 103, 106, 110, 150eliocd 44886 . . . . . 6 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → (𝐺𝑥) ∈ (-∞(,]𝐴))
15293, 101, 151elpreimad 7062 . . . . 5 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → 𝑥 ∈ (𝐺 “ (-∞(,]𝐴)))
153152ssd 44440 . . . 4 (𝜑 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷) ⊆ (𝐺 “ (-∞(,]𝐴)))
15492, 153eqsstrd 4016 . . 3 (𝜑 → ( 𝑛𝑍 (𝐻𝑛) ∩ 𝐷) ⊆ (𝐺 “ (-∞(,]𝐴)))
15590, 154eqssd 3995 . 2 (𝜑 → (𝐺 “ (-∞(,]𝐴)) = ( 𝑛𝑍 (𝐻𝑛) ∩ 𝐷))
156 eqid 2728 . . . . 5 {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦} = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
157 fvex 6904 . . . . . . . . 9 (𝐹𝑛) ∈ V
158157dmex 7911 . . . . . . . 8 dom (𝐹𝑛) ∈ V
159158rgenw 3061 . . . . . . 7 𝑛𝑍 dom (𝐹𝑛) ∈ V
160159a1i 11 . . . . . 6 (𝜑 → ∀𝑛𝑍 dom (𝐹𝑛) ∈ V)
16124, 160iinexd 44493 . . . . 5 (𝜑 𝑛𝑍 dom (𝐹𝑛) ∈ V)
162156, 161rabexd 5329 . . . 4 (𝜑 → {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦} ∈ V)
1639, 162eqeltrid 2833 . . 3 (𝜑𝐷 ∈ V)
16422uzct 44421 . . . . 5 𝑍 ≼ ω
165164a1i 11 . . . 4 (𝜑𝑍 ≼ ω)
166 smfsuplem1.h . . . . 5 (𝜑𝐻:𝑍𝑆)
167166ffvelcdmda 7088 . . . 4 ((𝜑𝑛𝑍) → (𝐻𝑛) ∈ 𝑆)
1681, 165, 24, 167saliincl 45709 . . 3 (𝜑 𝑛𝑍 (𝐻𝑛) ∈ 𝑆)
169 eqid 2728 . . 3 ( 𝑛𝑍 (𝐻𝑛) ∩ 𝐷) = ( 𝑛𝑍 (𝐻𝑛) ∩ 𝐷)
1701, 163, 168, 169elrestd 44468 . 2 (𝜑 → ( 𝑛𝑍 (𝐻𝑛) ∩ 𝐷) ∈ (𝑆t 𝐷))
171155, 170eqeltrd 2829 1 (𝜑 → (𝐺 “ (-∞(,]𝐴)) ∈ (𝑆t 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  wne 2936  wral 3057  wrex 3066  {crab 3428  Vcvv 3470  cin 3944  wss 3945  c0 4318   ciin 4992   class class class wbr 5142  cmpt 5225  ccnv 5671  dom cdm 5672  ran crn 5673  cima 5675   Fn wfn 6537  wf 6538  cfv 6542  (class class class)co 7414  ωcom 7864  cdom 8955  supcsup 9457  cr 11131  -∞cmnf 11270  *cxr 11271   < clt 11272  cle 11273  cz 12582  cuz 12846  (,]cioc 13351  t crest 17395  SAlgcsalg 45690  SMblFncsmblfn 46077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-inf2 9658  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209  ax-pre-sup 11210
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-omul 8485  df-er 8718  df-map 8840  df-pm 8841  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9459  df-oi 9527  df-card 9956  df-acn 9959  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-nn 12237  df-n0 12497  df-z 12583  df-uz 12847  df-ioo 13354  df-ioc 13355  df-ico 13356  df-rest 17397  df-salg 45691  df-smblfn 46078
This theorem is referenced by:  smfsuplem2  46194
  Copyright terms: Public domain W3C validator
OSZAR »