MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxds Structured version   Visualization version   GIF version

Theorem rrxds 25334
Description: The distance over generalized Euclidean spaces. Compare with df-rrn 37299. (Contributed by Thierry Arnoux, 20-Jun-2019.) (Proof shortened by AV, 20-Jul-2019.)
Hypotheses
Ref Expression
rrxval.r 𝐻 = (ℝ^‘𝐼)
rrxbase.b 𝐵 = (Base‘𝐻)
Assertion
Ref Expression
rrxds (𝐼𝑉 → (𝑓𝐵, 𝑔𝐵 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))) = (dist‘𝐻))
Distinct variable groups:   𝑓,𝑔,𝑥,𝐵   𝑓,𝐼,𝑔,𝑥   𝑓,𝑉,𝑔,𝑥
Allowed substitution hints:   𝐻(𝑥,𝑓,𝑔)

Proof of Theorem rrxds
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 rrxval.r . . . 4 𝐻 = (ℝ^‘𝐼)
21rrxval 25328 . . 3 (𝐼𝑉𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼)))
32fveq2d 6901 . 2 (𝐼𝑉 → (dist‘𝐻) = (dist‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
4 resrng 21553 . . . . 5 fld ∈ *-Ring
5 srngring 20732 . . . . 5 (ℝfld ∈ *-Ring → ℝfld ∈ Ring)
64, 5ax-mp 5 . . . 4 fld ∈ Ring
7 eqid 2728 . . . . 5 (ℝfld freeLMod 𝐼) = (ℝfld freeLMod 𝐼)
87frlmlmod 21683 . . . 4 ((ℝfld ∈ Ring ∧ 𝐼𝑉) → (ℝfld freeLMod 𝐼) ∈ LMod)
96, 8mpan 689 . . 3 (𝐼𝑉 → (ℝfld freeLMod 𝐼) ∈ LMod)
10 lmodgrp 20750 . . 3 ((ℝfld freeLMod 𝐼) ∈ LMod → (ℝfld freeLMod 𝐼) ∈ Grp)
11 eqid 2728 . . . 4 (toℂPreHil‘(ℝfld freeLMod 𝐼)) = (toℂPreHil‘(ℝfld freeLMod 𝐼))
12 eqid 2728 . . . 4 (norm‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) = (norm‘(toℂPreHil‘(ℝfld freeLMod 𝐼)))
13 eqid 2728 . . . 4 (-g‘(ℝfld freeLMod 𝐼)) = (-g‘(ℝfld freeLMod 𝐼))
1411, 12, 13tcphds 25172 . . 3 ((ℝfld freeLMod 𝐼) ∈ Grp → ((norm‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) ∘ (-g‘(ℝfld freeLMod 𝐼))) = (dist‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
159, 10, 143syl 18 . 2 (𝐼𝑉 → ((norm‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) ∘ (-g‘(ℝfld freeLMod 𝐼))) = (dist‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
16 eqid 2728 . . . . . . . 8 (Base‘(ℝfld freeLMod 𝐼)) = (Base‘(ℝfld freeLMod 𝐼))
1716, 13grpsubf 18975 . . . . . . 7 ((ℝfld freeLMod 𝐼) ∈ Grp → (-g‘(ℝfld freeLMod 𝐼)):((Base‘(ℝfld freeLMod 𝐼)) × (Base‘(ℝfld freeLMod 𝐼)))⟶(Base‘(ℝfld freeLMod 𝐼)))
189, 10, 173syl 18 . . . . . 6 (𝐼𝑉 → (-g‘(ℝfld freeLMod 𝐼)):((Base‘(ℝfld freeLMod 𝐼)) × (Base‘(ℝfld freeLMod 𝐼)))⟶(Base‘(ℝfld freeLMod 𝐼)))
19 rrxbase.b . . . . . . . . . 10 𝐵 = (Base‘𝐻)
201, 19rrxbase 25329 . . . . . . . . 9 (𝐼𝑉𝐵 = { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0})
21 rebase 21538 . . . . . . . . . . 11 ℝ = (Base‘ℝfld)
22 re0g 21544 . . . . . . . . . . 11 0 = (0g‘ℝfld)
23 eqid 2728 . . . . . . . . . . 11 { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0} = { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0}
247, 21, 22, 23frlmbas 21689 . . . . . . . . . 10 ((ℝfld ∈ Ring ∧ 𝐼𝑉) → { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0} = (Base‘(ℝfld freeLMod 𝐼)))
256, 24mpan 689 . . . . . . . . 9 (𝐼𝑉 → { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0} = (Base‘(ℝfld freeLMod 𝐼)))
2620, 25eqtrd 2768 . . . . . . . 8 (𝐼𝑉𝐵 = (Base‘(ℝfld freeLMod 𝐼)))
2726sqxpeqd 5710 . . . . . . 7 (𝐼𝑉 → (𝐵 × 𝐵) = ((Base‘(ℝfld freeLMod 𝐼)) × (Base‘(ℝfld freeLMod 𝐼))))
2827, 26feq23d 6717 . . . . . 6 (𝐼𝑉 → ((-g‘(ℝfld freeLMod 𝐼)):(𝐵 × 𝐵)⟶𝐵 ↔ (-g‘(ℝfld freeLMod 𝐼)):((Base‘(ℝfld freeLMod 𝐼)) × (Base‘(ℝfld freeLMod 𝐼)))⟶(Base‘(ℝfld freeLMod 𝐼))))
2918, 28mpbird 257 . . . . 5 (𝐼𝑉 → (-g‘(ℝfld freeLMod 𝐼)):(𝐵 × 𝐵)⟶𝐵)
3029fovcdmda 7592 . . . 4 ((𝐼𝑉 ∧ (𝑓𝐵𝑔𝐵)) → (𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔) ∈ 𝐵)
3129ffnd 6723 . . . . 5 (𝐼𝑉 → (-g‘(ℝfld freeLMod 𝐼)) Fn (𝐵 × 𝐵))
32 fnov 7552 . . . . 5 ((-g‘(ℝfld freeLMod 𝐼)) Fn (𝐵 × 𝐵) ↔ (-g‘(ℝfld freeLMod 𝐼)) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)))
3331, 32sylib 217 . . . 4 (𝐼𝑉 → (-g‘(ℝfld freeLMod 𝐼)) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)))
341, 19rrxnm 25332 . . . . 5 (𝐼𝑉 → (𝐵 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ ((𝑥)↑2))))) = (norm‘𝐻))
352fveq2d 6901 . . . . 5 (𝐼𝑉 → (norm‘𝐻) = (norm‘(toℂPreHil‘(ℝfld freeLMod 𝐼))))
3634, 35eqtr2d 2769 . . . 4 (𝐼𝑉 → (norm‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) = (𝐵 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ ((𝑥)↑2))))))
37 fveq1 6896 . . . . . . . 8 ( = (𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔) → (𝑥) = ((𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)‘𝑥))
3837oveq1d 7435 . . . . . . 7 ( = (𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔) → ((𝑥)↑2) = (((𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)‘𝑥)↑2))
3938mpteq2dv 5250 . . . . . 6 ( = (𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔) → (𝑥𝐼 ↦ ((𝑥)↑2)) = (𝑥𝐼 ↦ (((𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)‘𝑥)↑2)))
4039oveq2d 7436 . . . . 5 ( = (𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔) → (ℝfld Σg (𝑥𝐼 ↦ ((𝑥)↑2))) = (ℝfld Σg (𝑥𝐼 ↦ (((𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)‘𝑥)↑2))))
4140fveq2d 6901 . . . 4 ( = (𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔) → (√‘(ℝfld Σg (𝑥𝐼 ↦ ((𝑥)↑2)))) = (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)‘𝑥)↑2)))))
4230, 33, 36, 41fmpoco 8100 . . 3 (𝐼𝑉 → ((norm‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) ∘ (-g‘(ℝfld freeLMod 𝐼))) = (𝑓𝐵, 𝑔𝐵 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)‘𝑥)↑2))))))
43 simp1 1134 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑓𝐵𝑔𝐵) → 𝐼𝑉)
44 simprl 770 . . . . . . . . . . . . . . . 16 ((𝐼𝑉 ∧ (𝑓𝐵𝑔𝐵)) → 𝑓𝐵)
4526adantr 480 . . . . . . . . . . . . . . . 16 ((𝐼𝑉 ∧ (𝑓𝐵𝑔𝐵)) → 𝐵 = (Base‘(ℝfld freeLMod 𝐼)))
4644, 45eleqtrd 2831 . . . . . . . . . . . . . . 15 ((𝐼𝑉 ∧ (𝑓𝐵𝑔𝐵)) → 𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)))
47463impb 1113 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑓𝐵𝑔𝐵) → 𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼)))
487, 21, 16frlmbasmap 21693 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑓 ∈ (Base‘(ℝfld freeLMod 𝐼))) → 𝑓 ∈ (ℝ ↑m 𝐼))
4943, 47, 48syl2anc 583 . . . . . . . . . . . . 13 ((𝐼𝑉𝑓𝐵𝑔𝐵) → 𝑓 ∈ (ℝ ↑m 𝐼))
50 elmapi 8868 . . . . . . . . . . . . 13 (𝑓 ∈ (ℝ ↑m 𝐼) → 𝑓:𝐼⟶ℝ)
5149, 50syl 17 . . . . . . . . . . . 12 ((𝐼𝑉𝑓𝐵𝑔𝐵) → 𝑓:𝐼⟶ℝ)
5251ffnd 6723 . . . . . . . . . . 11 ((𝐼𝑉𝑓𝐵𝑔𝐵) → 𝑓 Fn 𝐼)
53 simprr 772 . . . . . . . . . . . . . . . 16 ((𝐼𝑉 ∧ (𝑓𝐵𝑔𝐵)) → 𝑔𝐵)
5453, 45eleqtrd 2831 . . . . . . . . . . . . . . 15 ((𝐼𝑉 ∧ (𝑓𝐵𝑔𝐵)) → 𝑔 ∈ (Base‘(ℝfld freeLMod 𝐼)))
55543impb 1113 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑓𝐵𝑔𝐵) → 𝑔 ∈ (Base‘(ℝfld freeLMod 𝐼)))
567, 21, 16frlmbasmap 21693 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑔 ∈ (Base‘(ℝfld freeLMod 𝐼))) → 𝑔 ∈ (ℝ ↑m 𝐼))
5743, 55, 56syl2anc 583 . . . . . . . . . . . . 13 ((𝐼𝑉𝑓𝐵𝑔𝐵) → 𝑔 ∈ (ℝ ↑m 𝐼))
58 elmapi 8868 . . . . . . . . . . . . 13 (𝑔 ∈ (ℝ ↑m 𝐼) → 𝑔:𝐼⟶ℝ)
5957, 58syl 17 . . . . . . . . . . . 12 ((𝐼𝑉𝑓𝐵𝑔𝐵) → 𝑔:𝐼⟶ℝ)
6059ffnd 6723 . . . . . . . . . . 11 ((𝐼𝑉𝑓𝐵𝑔𝐵) → 𝑔 Fn 𝐼)
61 inidm 4219 . . . . . . . . . . 11 (𝐼𝐼) = 𝐼
62 eqidd 2729 . . . . . . . . . . 11 (((𝐼𝑉𝑓𝐵𝑔𝐵) ∧ 𝑥𝐼) → (𝑓𝑥) = (𝑓𝑥))
63 eqidd 2729 . . . . . . . . . . 11 (((𝐼𝑉𝑓𝐵𝑔𝐵) ∧ 𝑥𝐼) → (𝑔𝑥) = (𝑔𝑥))
6452, 60, 43, 43, 61, 62, 63offval 7694 . . . . . . . . . 10 ((𝐼𝑉𝑓𝐵𝑔𝐵) → (𝑓f (-g‘ℝfld)𝑔) = (𝑥𝐼 ↦ ((𝑓𝑥)(-g‘ℝfld)(𝑔𝑥))))
656a1i 11 . . . . . . . . . . . 12 ((𝐼𝑉 ∧ (𝑓𝐵𝑔𝐵)) → ℝfld ∈ Ring)
66 simpl 482 . . . . . . . . . . . 12 ((𝐼𝑉 ∧ (𝑓𝐵𝑔𝐵)) → 𝐼𝑉)
67 eqid 2728 . . . . . . . . . . . 12 (-g‘ℝfld) = (-g‘ℝfld)
687, 16, 65, 66, 46, 54, 67, 13frlmsubgval 21699 . . . . . . . . . . 11 ((𝐼𝑉 ∧ (𝑓𝐵𝑔𝐵)) → (𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔) = (𝑓f (-g‘ℝfld)𝑔))
69683impb 1113 . . . . . . . . . 10 ((𝐼𝑉𝑓𝐵𝑔𝐵) → (𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔) = (𝑓f (-g‘ℝfld)𝑔))
7051ffvelcdmda 7094 . . . . . . . . . . . 12 (((𝐼𝑉𝑓𝐵𝑔𝐵) ∧ 𝑥𝐼) → (𝑓𝑥) ∈ ℝ)
7159ffvelcdmda 7094 . . . . . . . . . . . 12 (((𝐼𝑉𝑓𝐵𝑔𝐵) ∧ 𝑥𝐼) → (𝑔𝑥) ∈ ℝ)
7267resubgval 21541 . . . . . . . . . . . 12 (((𝑓𝑥) ∈ ℝ ∧ (𝑔𝑥) ∈ ℝ) → ((𝑓𝑥) − (𝑔𝑥)) = ((𝑓𝑥)(-g‘ℝfld)(𝑔𝑥)))
7370, 71, 72syl2anc 583 . . . . . . . . . . 11 (((𝐼𝑉𝑓𝐵𝑔𝐵) ∧ 𝑥𝐼) → ((𝑓𝑥) − (𝑔𝑥)) = ((𝑓𝑥)(-g‘ℝfld)(𝑔𝑥)))
7473mpteq2dva 5248 . . . . . . . . . 10 ((𝐼𝑉𝑓𝐵𝑔𝐵) → (𝑥𝐼 ↦ ((𝑓𝑥) − (𝑔𝑥))) = (𝑥𝐼 ↦ ((𝑓𝑥)(-g‘ℝfld)(𝑔𝑥))))
7564, 69, 743eqtr4d 2778 . . . . . . . . 9 ((𝐼𝑉𝑓𝐵𝑔𝐵) → (𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔) = (𝑥𝐼 ↦ ((𝑓𝑥) − (𝑔𝑥))))
7670, 71resubcld 11673 . . . . . . . . 9 (((𝐼𝑉𝑓𝐵𝑔𝐵) ∧ 𝑥𝐼) → ((𝑓𝑥) − (𝑔𝑥)) ∈ ℝ)
7775, 76fvmpt2d 7018 . . . . . . . 8 (((𝐼𝑉𝑓𝐵𝑔𝐵) ∧ 𝑥𝐼) → ((𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)‘𝑥) = ((𝑓𝑥) − (𝑔𝑥)))
7877oveq1d 7435 . . . . . . 7 (((𝐼𝑉𝑓𝐵𝑔𝐵) ∧ 𝑥𝐼) → (((𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)‘𝑥)↑2) = (((𝑓𝑥) − (𝑔𝑥))↑2))
7978mpteq2dva 5248 . . . . . 6 ((𝐼𝑉𝑓𝐵𝑔𝐵) → (𝑥𝐼 ↦ (((𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)‘𝑥)↑2)) = (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)))
8079oveq2d 7436 . . . . 5 ((𝐼𝑉𝑓𝐵𝑔𝐵) → (ℝfld Σg (𝑥𝐼 ↦ (((𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)‘𝑥)↑2))) = (ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))
8180fveq2d 6901 . . . 4 ((𝐼𝑉𝑓𝐵𝑔𝐵) → (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)‘𝑥)↑2)))) = (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)))))
8281mpoeq3dva 7497 . . 3 (𝐼𝑉 → (𝑓𝐵, 𝑔𝐵 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓(-g‘(ℝfld freeLMod 𝐼))𝑔)‘𝑥)↑2))))) = (𝑓𝐵, 𝑔𝐵 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))))
8342, 82eqtrd 2768 . 2 (𝐼𝑉 → ((norm‘(toℂPreHil‘(ℝfld freeLMod 𝐼))) ∘ (-g‘(ℝfld freeLMod 𝐼))) = (𝑓𝐵, 𝑔𝐵 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))))
843, 15, 833eqtr2rd 2775 1 (𝐼𝑉 → (𝑓𝐵, 𝑔𝐵 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))) = (dist‘𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1534  wcel 2099  {crab 3429   class class class wbr 5148  cmpt 5231   × cxp 5676  ccom 5682   Fn wfn 6543  wf 6544  cfv 6548  (class class class)co 7420  cmpo 7422  f cof 7683  m cmap 8845   finSupp cfsupp 9386  cr 11138  0cc0 11139  cmin 11475  2c2 12298  cexp 14059  csqrt 15213  Basecbs 17180  distcds 17242   Σg cgsu 17422  Grpcgrp 18890  -gcsg 18892  Ringcrg 20173  *-Ringcsr 20724  LModclmod 20743  fldcrefld 21536   freeLMod cfrlm 21680  normcnm 24498  toℂPreHilctcph 25108  ℝ^crrx 25324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216  ax-pre-sup 11217  ax-addf 11218  ax-mulf 11219
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-of 7685  df-om 7871  df-1st 7993  df-2nd 7994  df-supp 8166  df-tpos 8232  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9387  df-sup 9466  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-div 11903  df-nn 12244  df-2 12306  df-3 12307  df-4 12308  df-5 12309  df-6 12310  df-7 12311  df-8 12312  df-9 12313  df-n0 12504  df-z 12590  df-dec 12709  df-uz 12854  df-rp 13008  df-fz 13518  df-seq 14000  df-exp 14060  df-cj 15079  df-re 15080  df-im 15081  df-sqrt 15215  df-abs 15216  df-struct 17116  df-sets 17133  df-slot 17151  df-ndx 17163  df-base 17181  df-ress 17210  df-plusg 17246  df-mulr 17247  df-starv 17248  df-sca 17249  df-vsca 17250  df-ip 17251  df-tset 17252  df-ple 17253  df-ds 17255  df-unif 17256  df-hom 17257  df-cco 17258  df-0g 17423  df-prds 17429  df-pws 17431  df-mgm 18600  df-sgrp 18679  df-mnd 18695  df-mhm 18740  df-grp 18893  df-minusg 18894  df-sbg 18895  df-subg 19078  df-ghm 19168  df-cmn 19737  df-abl 19738  df-mgp 20075  df-rng 20093  df-ur 20122  df-ring 20175  df-cring 20176  df-oppr 20273  df-dvdsr 20296  df-unit 20297  df-invr 20327  df-dvr 20340  df-rhm 20411  df-subrng 20483  df-subrg 20508  df-drng 20626  df-field 20627  df-staf 20725  df-srng 20726  df-lmod 20745  df-lss 20816  df-sra 21058  df-rgmod 21059  df-cnfld 21280  df-refld 21537  df-dsmm 21666  df-frlm 21681  df-nm 24504  df-tng 24506  df-tcph 25110  df-rrx 25326
This theorem is referenced by:  rrxmval  25346  rrxmfval  25347  rrxdsfi  25352  rrxtopn  45672
  Copyright terms: Public domain W3C validator
OSZAR »