Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimrecltneg Structured version   Visualization version   GIF version

Theorem pimrecltneg 46106
Description: The preimage of an unbounded below, open interval, with negative upper bound, for the reciprocal function. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
pimrecltneg.x 𝑥𝜑
pimrecltneg.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
pimrecltneg.n ((𝜑𝑥𝐴) → 𝐵 ≠ 0)
pimrecltneg.c (𝜑𝐶 ∈ ℝ)
pimrecltneg.l (𝜑𝐶 < 0)
Assertion
Ref Expression
pimrecltneg (𝜑 → {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} = {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)})

Proof of Theorem pimrecltneg
StepHypRef Expression
1 pimrecltneg.x . . 3 𝑥𝜑
2 rabidim1 3449 . . . . . . . 8 (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} → 𝑥𝐴)
32adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 𝑥𝐴)
4 1red 11239 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℝ)
5 pimrecltneg.c . . . . . . . . . . 11 (𝜑𝐶 ∈ ℝ)
6 pimrecltneg.l . . . . . . . . . . . 12 (𝜑𝐶 < 0)
75, 6ltned 11374 . . . . . . . . . . 11 (𝜑𝐶 ≠ 0)
84, 5, 7redivcld 12066 . . . . . . . . . 10 (𝜑 → (1 / 𝐶) ∈ ℝ)
98rexrd 11288 . . . . . . . . 9 (𝜑 → (1 / 𝐶) ∈ ℝ*)
109adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → (1 / 𝐶) ∈ ℝ*)
11 0xr 11285 . . . . . . . . 9 0 ∈ ℝ*
1211a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 0 ∈ ℝ*)
13 pimrecltneg.b . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
142, 13sylan2 592 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 𝐵 ∈ ℝ)
15 rabidim2 44462 . . . . . . . . . 10 (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} → (1 / 𝐵) < 𝐶)
1615adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → (1 / 𝐵) < 𝐶)
174adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 1 ∈ ℝ)
18 pimrecltneg.n . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝐵 ≠ 0)
193, 18syldan 590 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 𝐵 ≠ 0)
2014, 19rereccld 12065 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → (1 / 𝐵) ∈ ℝ)
215adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 𝐶 ∈ ℝ)
22 0red 11241 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 0 ∈ ℝ)
236adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 𝐶 < 0)
2420, 21, 22, 16, 23lttrd 11399 . . . . . . . . . . 11 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → (1 / 𝐵) < 0)
2514, 19reclt0 44767 . . . . . . . . . . 11 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → (𝐵 < 0 ↔ (1 / 𝐵) < 0))
2624, 25mpbird 257 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 𝐵 < 0)
2717, 14, 26, 21, 23ltdiv23neg 44770 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → ((1 / 𝐵) < 𝐶 ↔ (1 / 𝐶) < 𝐵))
2816, 27mpbid 231 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → (1 / 𝐶) < 𝐵)
2910, 12, 14, 28, 26eliood 44877 . . . . . . 7 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 𝐵 ∈ ((1 / 𝐶)(,)0))
303, 29jca 511 . . . . . 6 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → (𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)))
31 rabid 3448 . . . . . 6 (𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)} ↔ (𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)))
3230, 31sylibr 233 . . . . 5 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)})
3332ex 412 . . . 4 (𝜑 → (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} → 𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}))
3431simplbi 497 . . . . . . . 8 (𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)} → 𝑥𝐴)
3534adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → 𝑥𝐴)
369adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → (1 / 𝐶) ∈ ℝ*)
3711a1i 11 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → 0 ∈ ℝ*)
3831simprbi 496 . . . . . . . . . 10 (𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)} → 𝐵 ∈ ((1 / 𝐶)(,)0))
3938adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → 𝐵 ∈ ((1 / 𝐶)(,)0))
4036, 37, 39ioogtlbd 44929 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → (1 / 𝐶) < 𝐵)
414adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → 1 ∈ ℝ)
425adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → 𝐶 ∈ ℝ)
436adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → 𝐶 < 0)
4435, 13syldan 590 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → 𝐵 ∈ ℝ)
4536, 37, 39iooltubd 44923 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → 𝐵 < 0)
4641, 42, 43, 44, 45ltdiv23neg 44770 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → ((1 / 𝐶) < 𝐵 ↔ (1 / 𝐵) < 𝐶))
4740, 46mpbid 231 . . . . . . 7 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → (1 / 𝐵) < 𝐶)
4835, 47jca 511 . . . . . 6 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → (𝑥𝐴 ∧ (1 / 𝐵) < 𝐶))
49 rabid 3448 . . . . . 6 (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} ↔ (𝑥𝐴 ∧ (1 / 𝐵) < 𝐶))
5048, 49sylibr 233 . . . . 5 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}) → 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶})
5150ex 412 . . . 4 (𝜑 → (𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)} → 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}))
5233, 51impbid 211 . . 3 (𝜑 → (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} ↔ 𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}))
531, 52alrimi 2202 . 2 (𝜑 → ∀𝑥(𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} ↔ 𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}))
54 nfrab1 3447 . . 3 𝑥{𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}
55 nfrab1 3447 . . 3 𝑥{𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}
5654, 55cleqf 2930 . 2 ({𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} = {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)} ↔ ∀𝑥(𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} ↔ 𝑥 ∈ {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)}))
5753, 56sylibr 233 1 (𝜑 → {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} = {𝑥𝐴𝐵 ∈ ((1 / 𝐶)(,)0)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1532   = wceq 1534  wnf 1778  wcel 2099  wne 2936  {crab 3428   class class class wbr 5142  (class class class)co 7414  cr 11131  0cc0 11132  1c1 11133  *cxr 11271   < clt 11272   / cdiv 11895  (,)cioo 13350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-po 5584  df-so 5585  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7987  df-2nd 7988  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-div 11896  df-rp 13001  df-ioo 13354
This theorem is referenced by:  smfrec  46171
  Copyright terms: Public domain W3C validator
OSZAR »