![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > pjhclii | Structured version Visualization version GIF version |
Description: Closure of a projection in Hilbert space. (Contributed by NM, 30-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pjcli.1 | ⊢ 𝐻 ∈ Cℋ |
pjcli.2 | ⊢ 𝐴 ∈ ℋ |
Ref | Expression |
---|---|
pjhclii | ⊢ ((projℎ‘𝐻)‘𝐴) ∈ ℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pjcli.2 | . 2 ⊢ 𝐴 ∈ ℋ | |
2 | pjcli.1 | . . 3 ⊢ 𝐻 ∈ Cℋ | |
3 | 2 | pjhcli 31300 | . 2 ⊢ (𝐴 ∈ ℋ → ((projℎ‘𝐻)‘𝐴) ∈ ℋ) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ ((projℎ‘𝐻)‘𝐴) ∈ ℋ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2098 ‘cfv 6549 ℋchba 30801 Cℋ cch 30811 projℎcpjh 30819 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-inf2 9666 ax-cc 10460 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 ax-pre-sup 11218 ax-addf 11219 ax-mulf 11220 ax-hilex 30881 ax-hfvadd 30882 ax-hvcom 30883 ax-hvass 30884 ax-hv0cl 30885 ax-hvaddid 30886 ax-hfvmul 30887 ax-hvmulid 30888 ax-hvmulass 30889 ax-hvdistr1 30890 ax-hvdistr2 30891 ax-hvmul0 30892 ax-hfi 30961 ax-his1 30964 ax-his2 30965 ax-his3 30966 ax-his4 30967 ax-hcompl 31084 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-iin 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-isom 6558 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-oadd 8491 df-omul 8492 df-er 8725 df-map 8847 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fi 9436 df-sup 9467 df-inf 9468 df-oi 9535 df-card 9964 df-acn 9967 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-div 11904 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-n0 12506 df-z 12592 df-uz 12856 df-q 12966 df-rp 13010 df-xneg 13127 df-xadd 13128 df-xmul 13129 df-ico 13365 df-icc 13366 df-fz 13520 df-fl 13793 df-seq 14003 df-exp 14063 df-cj 15082 df-re 15083 df-im 15084 df-sqrt 15218 df-abs 15219 df-clim 15468 df-rlim 15469 df-rest 17407 df-topgen 17428 df-psmet 21288 df-xmet 21289 df-met 21290 df-bl 21291 df-mopn 21292 df-fbas 21293 df-fg 21294 df-top 22840 df-topon 22857 df-bases 22893 df-cld 22967 df-ntr 22968 df-cls 22969 df-nei 23046 df-lm 23177 df-haus 23263 df-fil 23794 df-fm 23886 df-flim 23887 df-flf 23888 df-cfil 25227 df-cau 25228 df-cmet 25229 df-grpo 30375 df-gid 30376 df-ginv 30377 df-gdiv 30378 df-ablo 30427 df-vc 30441 df-nv 30474 df-va 30477 df-ba 30478 df-sm 30479 df-0v 30480 df-vs 30481 df-nmcv 30482 df-ims 30483 df-ssp 30604 df-ph 30695 df-cbn 30745 df-hnorm 30850 df-hba 30851 df-hvsub 30853 df-hlim 30854 df-hcau 30855 df-sh 31089 df-ch 31103 df-oc 31134 df-ch0 31135 df-shs 31190 df-pjh 31277 |
This theorem is referenced by: pjoc1i 31313 pjchi 31314 spansnpji 31460 spanunsni 31461 spansnji 31528 pjidmi 31555 pjadjii 31556 pjaddii 31557 pjinormii 31558 pjmulii 31559 pjsubii 31560 pjsslem 31561 pjss2i 31562 pjssmii 31563 pjssge0ii 31564 pjdifnormii 31565 pjcji 31566 pjopythi 31601 pjnormi 31603 pjneli 31605 |
Copyright terms: Public domain | W3C validator |