HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  pjhclii Structured version   Visualization version   GIF version

Theorem pjhclii 31304
Description: Closure of a projection in Hilbert space. (Contributed by NM, 30-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
pjcli.1 𝐻C
pjcli.2 𝐴 ∈ ℋ
Assertion
Ref Expression
pjhclii ((proj𝐻)‘𝐴) ∈ ℋ

Proof of Theorem pjhclii
StepHypRef Expression
1 pjcli.2 . 2 𝐴 ∈ ℋ
2 pjcli.1 . . 3 𝐻C
32pjhcli 31300 . 2 (𝐴 ∈ ℋ → ((proj𝐻)‘𝐴) ∈ ℋ)
41, 3ax-mp 5 1 ((proj𝐻)‘𝐴) ∈ ℋ
Colors of variables: wff setvar class
Syntax hints:  wcel 2098  cfv 6549  chba 30801   C cch 30811  projcpjh 30819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-inf2 9666  ax-cc 10460  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218  ax-addf 11219  ax-mulf 11220  ax-hilex 30881  ax-hfvadd 30882  ax-hvcom 30883  ax-hvass 30884  ax-hv0cl 30885  ax-hvaddid 30886  ax-hfvmul 30887  ax-hvmulid 30888  ax-hvmulass 30889  ax-hvdistr1 30890  ax-hvdistr2 30891  ax-hvmul0 30892  ax-hfi 30961  ax-his1 30964  ax-his2 30965  ax-his3 30966  ax-his4 30967  ax-hcompl 31084
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-oadd 8491  df-omul 8492  df-er 8725  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fi 9436  df-sup 9467  df-inf 9468  df-oi 9535  df-card 9964  df-acn 9967  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-n0 12506  df-z 12592  df-uz 12856  df-q 12966  df-rp 13010  df-xneg 13127  df-xadd 13128  df-xmul 13129  df-ico 13365  df-icc 13366  df-fz 13520  df-fl 13793  df-seq 14003  df-exp 14063  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219  df-clim 15468  df-rlim 15469  df-rest 17407  df-topgen 17428  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-top 22840  df-topon 22857  df-bases 22893  df-cld 22967  df-ntr 22968  df-cls 22969  df-nei 23046  df-lm 23177  df-haus 23263  df-fil 23794  df-fm 23886  df-flim 23887  df-flf 23888  df-cfil 25227  df-cau 25228  df-cmet 25229  df-grpo 30375  df-gid 30376  df-ginv 30377  df-gdiv 30378  df-ablo 30427  df-vc 30441  df-nv 30474  df-va 30477  df-ba 30478  df-sm 30479  df-0v 30480  df-vs 30481  df-nmcv 30482  df-ims 30483  df-ssp 30604  df-ph 30695  df-cbn 30745  df-hnorm 30850  df-hba 30851  df-hvsub 30853  df-hlim 30854  df-hcau 30855  df-sh 31089  df-ch 31103  df-oc 31134  df-ch0 31135  df-shs 31190  df-pjh 31277
This theorem is referenced by:  pjoc1i  31313  pjchi  31314  spansnpji  31460  spanunsni  31461  spansnji  31528  pjidmi  31555  pjadjii  31556  pjaddii  31557  pjinormii  31558  pjmulii  31559  pjsubii  31560  pjsslem  31561  pjss2i  31562  pjssmii  31563  pjssge0ii  31564  pjdifnormii  31565  pjcji  31566  pjopythi  31601  pjnormi  31603  pjneli  31605
  Copyright terms: Public domain W3C validator
OSZAR »