![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psrbagaddcl | Structured version Visualization version GIF version |
Description: The sum of two finite bags is a finite bag. (Contributed by Mario Carneiro, 9-Jan-2015.) Shorten proof and remove a sethood antecedent. (Revised by SN, 7-Aug-2024.) |
Ref | Expression |
---|---|
psrbag.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
Ref | Expression |
---|---|
psrbagaddcl | ⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → (𝐹 ∘f + 𝐺) ∈ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0addcl 12532 | . . . 4 ⊢ ((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0) → (𝑥 + 𝑦) ∈ ℕ0) | |
2 | 1 | adantl 481 | . . 3 ⊢ (((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) ∧ (𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0)) → (𝑥 + 𝑦) ∈ ℕ0) |
3 | psrbag.d | . . . . 5 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
4 | 3 | psrbagf 21845 | . . . 4 ⊢ (𝐹 ∈ 𝐷 → 𝐹:𝐼⟶ℕ0) |
5 | 4 | adantr 480 | . . 3 ⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → 𝐹:𝐼⟶ℕ0) |
6 | 3 | psrbagf 21845 | . . . 4 ⊢ (𝐺 ∈ 𝐷 → 𝐺:𝐼⟶ℕ0) |
7 | 6 | adantl 481 | . . 3 ⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → 𝐺:𝐼⟶ℕ0) |
8 | simpl 482 | . . . 4 ⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → 𝐹 ∈ 𝐷) | |
9 | 5 | ffnd 6718 | . . . 4 ⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → 𝐹 Fn 𝐼) |
10 | 8, 9 | fndmexd 7907 | . . 3 ⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → 𝐼 ∈ V) |
11 | inidm 4215 | . . 3 ⊢ (𝐼 ∩ 𝐼) = 𝐼 | |
12 | 2, 5, 7, 10, 10, 11 | off 7698 | . 2 ⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → (𝐹 ∘f + 𝐺):𝐼⟶ℕ0) |
13 | ovex 7448 | . . . 4 ⊢ (𝐹 ∘f + 𝐺) ∈ V | |
14 | fcdmnn0suppg 12555 | . . . 4 ⊢ (((𝐹 ∘f + 𝐺) ∈ V ∧ (𝐹 ∘f + 𝐺):𝐼⟶ℕ0) → ((𝐹 ∘f + 𝐺) supp 0) = (◡(𝐹 ∘f + 𝐺) “ ℕ)) | |
15 | 13, 12, 14 | sylancr 586 | . . 3 ⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → ((𝐹 ∘f + 𝐺) supp 0) = (◡(𝐹 ∘f + 𝐺) “ ℕ)) |
16 | 3 | psrbagfsupp 21847 | . . . . . 6 ⊢ (𝐹 ∈ 𝐷 → 𝐹 finSupp 0) |
17 | 16 | adantr 480 | . . . . 5 ⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → 𝐹 finSupp 0) |
18 | 3 | psrbagfsupp 21847 | . . . . . 6 ⊢ (𝐺 ∈ 𝐷 → 𝐺 finSupp 0) |
19 | 18 | adantl 481 | . . . . 5 ⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → 𝐺 finSupp 0) |
20 | 17, 19 | fsuppunfi 9406 | . . . 4 ⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ∈ Fin) |
21 | 0nn0 12512 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
22 | 21 | a1i 11 | . . . . 5 ⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → 0 ∈ ℕ0) |
23 | 00id 11414 | . . . . . 6 ⊢ (0 + 0) = 0 | |
24 | 23 | a1i 11 | . . . . 5 ⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → (0 + 0) = 0) |
25 | 10, 22, 5, 7, 24 | suppofssd 8203 | . . . 4 ⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → ((𝐹 ∘f + 𝐺) supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0))) |
26 | 20, 25 | ssfid 9286 | . . 3 ⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → ((𝐹 ∘f + 𝐺) supp 0) ∈ Fin) |
27 | 15, 26 | eqeltrrd 2830 | . 2 ⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → (◡(𝐹 ∘f + 𝐺) “ ℕ) ∈ Fin) |
28 | 3 | psrbag 21844 | . . 3 ⊢ (𝐼 ∈ V → ((𝐹 ∘f + 𝐺) ∈ 𝐷 ↔ ((𝐹 ∘f + 𝐺):𝐼⟶ℕ0 ∧ (◡(𝐹 ∘f + 𝐺) “ ℕ) ∈ Fin))) |
29 | 10, 28 | syl 17 | . 2 ⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → ((𝐹 ∘f + 𝐺) ∈ 𝐷 ↔ ((𝐹 ∘f + 𝐺):𝐼⟶ℕ0 ∧ (◡(𝐹 ∘f + 𝐺) “ ℕ) ∈ Fin))) |
30 | 12, 27, 29 | mpbir2and 712 | 1 ⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → (𝐹 ∘f + 𝐺) ∈ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 {crab 3428 Vcvv 3470 ∪ cun 3943 class class class wbr 5143 ◡ccnv 5672 “ cima 5676 ⟶wf 6539 (class class class)co 7415 ∘f cof 7678 supp csupp 8160 ↑m cmap 8839 Fincfn 8958 finSupp cfsupp 9380 0cc0 11133 + caddc 11136 ℕcn 12237 ℕ0cn0 12497 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7418 df-oprab 7419 df-mpo 7420 df-of 7680 df-om 7866 df-1st 7988 df-2nd 7989 df-supp 8161 df-frecs 8281 df-wrecs 8312 df-recs 8386 df-rdg 8425 df-1o 8481 df-er 8719 df-map 8841 df-en 8959 df-dom 8960 df-sdom 8961 df-fin 8962 df-fsupp 9381 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-nn 12238 df-n0 12498 |
This theorem is referenced by: psrbagleadd1 21863 mplmon2mul 22007 evlslem1 22022 psdcl 22079 psdmplcl 22080 psdadd 22081 psdvsca 22082 psdmul 22084 tdeglem3 25987 |
Copyright terms: Public domain | W3C validator |