![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > recld | Structured version Visualization version GIF version |
Description: The real part of a complex number is real (closure law). (Contributed by Mario Carneiro, 29-May-2016.) |
Ref | Expression |
---|---|
recld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
recld | ⊢ (𝜑 → (ℜ‘𝐴) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | recl 15083 | . 2 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (ℜ‘𝐴) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 ‘cfv 6542 ℂcc 11130 ℝcr 11131 ℜcre 15070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-div 11896 df-2 12299 df-cj 15072 df-re 15073 |
This theorem is referenced by: abstri 15303 sqreulem 15332 eqsqrt2d 15341 rlimrege0 15549 recoscl 16111 cos01bnd 16156 cnsubrg 21353 mbfeqa 25565 mbfss 25568 mbfmulc2re 25570 mbfadd 25583 mbfmulc2 25585 mbflim 25590 mbfmul 25649 iblcn 25721 itgcnval 25722 itgre 25723 itgim 25724 iblneg 25725 itgneg 25726 iblss 25727 itgeqa 25736 iblconst 25740 ibladd 25743 itgadd 25747 iblabs 25751 iblabsr 25752 iblmulc2 25753 itgmulc2 25756 itgabs 25757 itgsplit 25758 bddiblnc 25764 dvlip 25919 tanregt0 26466 efif1olem4 26472 eff1olem 26475 lognegb 26517 relog 26524 efiarg 26534 cosarg0d 26536 argregt0 26537 argrege0 26538 abslogle 26545 logcnlem4 26572 cxpsqrtlem 26629 cxpcn3lem 26675 abscxpbnd 26681 cosangneg2d 26732 angrtmuld 26733 lawcoslem1 26740 isosctrlem1 26743 asinlem3a 26795 asinlem3 26796 asinneg 26811 asinsinlem 26816 asinsin 26817 acosbnd 26825 atanlogaddlem 26838 atanlogadd 26839 atanlogsublem 26840 atanlogsub 26841 atantan 26848 o1cxp 26900 cxploglim2 26904 zetacvg 26940 lgamgulmlem2 26955 sqsscirc2 33504 ibladdnc 37144 itgaddnc 37147 iblabsnc 37151 iblmulc2nc 37152 itgmulc2nc 37155 itgabsnc 37156 ftc1anclem2 37161 ftc1anclem5 37164 ftc1anclem6 37165 ftc1anclem8 37167 cntotbnd 37263 sqrtcvallem1 43055 sqrtcvallem4 43063 isosctrlem1ALT 44367 iblsplit 45348 |
Copyright terms: Public domain | W3C validator |