MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relexpcnv Structured version   Visualization version   GIF version

Theorem relexpcnv 15020
Description: Commutation of converse and relation exponentiation. (Contributed by RP, 23-May-2020.)
Assertion
Ref Expression
relexpcnv ((𝑁 ∈ ℕ0𝑅𝑉) → (𝑅𝑟𝑁) = (𝑅𝑟𝑁))

Proof of Theorem relexpcnv
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn0 12510 . . 3 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 oveq2 7432 . . . . . . . 8 (𝑛 = 1 → (𝑅𝑟𝑛) = (𝑅𝑟1))
32cnveqd 5880 . . . . . . 7 (𝑛 = 1 → (𝑅𝑟𝑛) = (𝑅𝑟1))
4 oveq2 7432 . . . . . . 7 (𝑛 = 1 → (𝑅𝑟𝑛) = (𝑅𝑟1))
53, 4eqeq12d 2743 . . . . . 6 (𝑛 = 1 → ((𝑅𝑟𝑛) = (𝑅𝑟𝑛) ↔ (𝑅𝑟1) = (𝑅𝑟1)))
65imbi2d 339 . . . . 5 (𝑛 = 1 → ((𝑅𝑉(𝑅𝑟𝑛) = (𝑅𝑟𝑛)) ↔ (𝑅𝑉(𝑅𝑟1) = (𝑅𝑟1))))
7 oveq2 7432 . . . . . . . 8 (𝑛 = 𝑚 → (𝑅𝑟𝑛) = (𝑅𝑟𝑚))
87cnveqd 5880 . . . . . . 7 (𝑛 = 𝑚(𝑅𝑟𝑛) = (𝑅𝑟𝑚))
9 oveq2 7432 . . . . . . 7 (𝑛 = 𝑚 → (𝑅𝑟𝑛) = (𝑅𝑟𝑚))
108, 9eqeq12d 2743 . . . . . 6 (𝑛 = 𝑚 → ((𝑅𝑟𝑛) = (𝑅𝑟𝑛) ↔ (𝑅𝑟𝑚) = (𝑅𝑟𝑚)))
1110imbi2d 339 . . . . 5 (𝑛 = 𝑚 → ((𝑅𝑉(𝑅𝑟𝑛) = (𝑅𝑟𝑛)) ↔ (𝑅𝑉(𝑅𝑟𝑚) = (𝑅𝑟𝑚))))
12 oveq2 7432 . . . . . . . 8 (𝑛 = (𝑚 + 1) → (𝑅𝑟𝑛) = (𝑅𝑟(𝑚 + 1)))
1312cnveqd 5880 . . . . . . 7 (𝑛 = (𝑚 + 1) → (𝑅𝑟𝑛) = (𝑅𝑟(𝑚 + 1)))
14 oveq2 7432 . . . . . . 7 (𝑛 = (𝑚 + 1) → (𝑅𝑟𝑛) = (𝑅𝑟(𝑚 + 1)))
1513, 14eqeq12d 2743 . . . . . 6 (𝑛 = (𝑚 + 1) → ((𝑅𝑟𝑛) = (𝑅𝑟𝑛) ↔ (𝑅𝑟(𝑚 + 1)) = (𝑅𝑟(𝑚 + 1))))
1615imbi2d 339 . . . . 5 (𝑛 = (𝑚 + 1) → ((𝑅𝑉(𝑅𝑟𝑛) = (𝑅𝑟𝑛)) ↔ (𝑅𝑉(𝑅𝑟(𝑚 + 1)) = (𝑅𝑟(𝑚 + 1)))))
17 oveq2 7432 . . . . . . . 8 (𝑛 = 𝑁 → (𝑅𝑟𝑛) = (𝑅𝑟𝑁))
1817cnveqd 5880 . . . . . . 7 (𝑛 = 𝑁(𝑅𝑟𝑛) = (𝑅𝑟𝑁))
19 oveq2 7432 . . . . . . 7 (𝑛 = 𝑁 → (𝑅𝑟𝑛) = (𝑅𝑟𝑁))
2018, 19eqeq12d 2743 . . . . . 6 (𝑛 = 𝑁 → ((𝑅𝑟𝑛) = (𝑅𝑟𝑛) ↔ (𝑅𝑟𝑁) = (𝑅𝑟𝑁)))
2120imbi2d 339 . . . . 5 (𝑛 = 𝑁 → ((𝑅𝑉(𝑅𝑟𝑛) = (𝑅𝑟𝑛)) ↔ (𝑅𝑉(𝑅𝑟𝑁) = (𝑅𝑟𝑁))))
22 relexp1g 15011 . . . . . . 7 (𝑅𝑉 → (𝑅𝑟1) = 𝑅)
2322cnveqd 5880 . . . . . 6 (𝑅𝑉(𝑅𝑟1) = 𝑅)
24 cnvexg 7936 . . . . . . 7 (𝑅𝑉𝑅 ∈ V)
25 relexp1g 15011 . . . . . . 7 (𝑅 ∈ V → (𝑅𝑟1) = 𝑅)
2624, 25syl 17 . . . . . 6 (𝑅𝑉 → (𝑅𝑟1) = 𝑅)
2723, 26eqtr4d 2770 . . . . 5 (𝑅𝑉(𝑅𝑟1) = (𝑅𝑟1))
28 cnvco 5890 . . . . . . . . 9 ((𝑅𝑟𝑚) ∘ 𝑅) = (𝑅(𝑅𝑟𝑚))
29 simp3 1135 . . . . . . . . . 10 ((𝑚 ∈ ℕ ∧ 𝑅𝑉(𝑅𝑟𝑚) = (𝑅𝑟𝑚)) → (𝑅𝑟𝑚) = (𝑅𝑟𝑚))
3029coeq2d 5867 . . . . . . . . 9 ((𝑚 ∈ ℕ ∧ 𝑅𝑉(𝑅𝑟𝑚) = (𝑅𝑟𝑚)) → (𝑅(𝑅𝑟𝑚)) = (𝑅 ∘ (𝑅𝑟𝑚)))
3128, 30eqtrid 2779 . . . . . . . 8 ((𝑚 ∈ ℕ ∧ 𝑅𝑉(𝑅𝑟𝑚) = (𝑅𝑟𝑚)) → ((𝑅𝑟𝑚) ∘ 𝑅) = (𝑅 ∘ (𝑅𝑟𝑚)))
32 simp2 1134 . . . . . . . . . 10 ((𝑚 ∈ ℕ ∧ 𝑅𝑉(𝑅𝑟𝑚) = (𝑅𝑟𝑚)) → 𝑅𝑉)
33 simp1 1133 . . . . . . . . . 10 ((𝑚 ∈ ℕ ∧ 𝑅𝑉(𝑅𝑟𝑚) = (𝑅𝑟𝑚)) → 𝑚 ∈ ℕ)
34 relexpsucnnr 15010 . . . . . . . . . 10 ((𝑅𝑉𝑚 ∈ ℕ) → (𝑅𝑟(𝑚 + 1)) = ((𝑅𝑟𝑚) ∘ 𝑅))
3532, 33, 34syl2anc 582 . . . . . . . . 9 ((𝑚 ∈ ℕ ∧ 𝑅𝑉(𝑅𝑟𝑚) = (𝑅𝑟𝑚)) → (𝑅𝑟(𝑚 + 1)) = ((𝑅𝑟𝑚) ∘ 𝑅))
3635cnveqd 5880 . . . . . . . 8 ((𝑚 ∈ ℕ ∧ 𝑅𝑉(𝑅𝑟𝑚) = (𝑅𝑟𝑚)) → (𝑅𝑟(𝑚 + 1)) = ((𝑅𝑟𝑚) ∘ 𝑅))
3732, 24syl 17 . . . . . . . . 9 ((𝑚 ∈ ℕ ∧ 𝑅𝑉(𝑅𝑟𝑚) = (𝑅𝑟𝑚)) → 𝑅 ∈ V)
38 relexpsucnnl 15015 . . . . . . . . 9 ((𝑅 ∈ V ∧ 𝑚 ∈ ℕ) → (𝑅𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅𝑟𝑚)))
3937, 33, 38syl2anc 582 . . . . . . . 8 ((𝑚 ∈ ℕ ∧ 𝑅𝑉(𝑅𝑟𝑚) = (𝑅𝑟𝑚)) → (𝑅𝑟(𝑚 + 1)) = (𝑅 ∘ (𝑅𝑟𝑚)))
4031, 36, 393eqtr4d 2777 . . . . . . 7 ((𝑚 ∈ ℕ ∧ 𝑅𝑉(𝑅𝑟𝑚) = (𝑅𝑟𝑚)) → (𝑅𝑟(𝑚 + 1)) = (𝑅𝑟(𝑚 + 1)))
41403exp 1116 . . . . . 6 (𝑚 ∈ ℕ → (𝑅𝑉 → ((𝑅𝑟𝑚) = (𝑅𝑟𝑚) → (𝑅𝑟(𝑚 + 1)) = (𝑅𝑟(𝑚 + 1)))))
4241a2d 29 . . . . 5 (𝑚 ∈ ℕ → ((𝑅𝑉(𝑅𝑟𝑚) = (𝑅𝑟𝑚)) → (𝑅𝑉(𝑅𝑟(𝑚 + 1)) = (𝑅𝑟(𝑚 + 1)))))
436, 11, 16, 21, 27, 42nnind 12266 . . . 4 (𝑁 ∈ ℕ → (𝑅𝑉(𝑅𝑟𝑁) = (𝑅𝑟𝑁)))
44 cnvresid 6635 . . . . . . 7 ( I ↾ (dom 𝑅 ∪ ran 𝑅)) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))
45 uncom 4152 . . . . . . . . 9 (dom 𝑅 ∪ ran 𝑅) = (ran 𝑅 ∪ dom 𝑅)
46 df-rn 5691 . . . . . . . . . 10 ran 𝑅 = dom 𝑅
47 dfdm4 5900 . . . . . . . . . 10 dom 𝑅 = ran 𝑅
4846, 47uneq12i 4160 . . . . . . . . 9 (ran 𝑅 ∪ dom 𝑅) = (dom 𝑅 ∪ ran 𝑅)
4945, 48eqtri 2755 . . . . . . . 8 (dom 𝑅 ∪ ran 𝑅) = (dom 𝑅 ∪ ran 𝑅)
5049reseq2i 5984 . . . . . . 7 ( I ↾ (dom 𝑅 ∪ ran 𝑅)) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))
5144, 50eqtri 2755 . . . . . 6 ( I ↾ (dom 𝑅 ∪ ran 𝑅)) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))
52 oveq2 7432 . . . . . . . 8 (𝑁 = 0 → (𝑅𝑟𝑁) = (𝑅𝑟0))
53 relexp0g 15007 . . . . . . . 8 (𝑅𝑉 → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
5452, 53sylan9eq 2787 . . . . . . 7 ((𝑁 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
5554cnveqd 5880 . . . . . 6 ((𝑁 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
56 oveq2 7432 . . . . . . . 8 (𝑁 = 0 → (𝑅𝑟𝑁) = (𝑅𝑟0))
5756adantr 479 . . . . . . 7 ((𝑁 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = (𝑅𝑟0))
58 simpr 483 . . . . . . . 8 ((𝑁 = 0 ∧ 𝑅𝑉) → 𝑅𝑉)
59 relexp0g 15007 . . . . . . . 8 (𝑅 ∈ V → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
6058, 24, 593syl 18 . . . . . . 7 ((𝑁 = 0 ∧ 𝑅𝑉) → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
6157, 60eqtrd 2767 . . . . . 6 ((𝑁 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
6251, 55, 613eqtr4a 2793 . . . . 5 ((𝑁 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = (𝑅𝑟𝑁))
6362ex 411 . . . 4 (𝑁 = 0 → (𝑅𝑉(𝑅𝑟𝑁) = (𝑅𝑟𝑁)))
6443, 63jaoi 855 . . 3 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (𝑅𝑉(𝑅𝑟𝑁) = (𝑅𝑟𝑁)))
651, 64sylbi 216 . 2 (𝑁 ∈ ℕ0 → (𝑅𝑉(𝑅𝑟𝑁) = (𝑅𝑟𝑁)))
6665imp 405 1 ((𝑁 ∈ ℕ0𝑅𝑉) → (𝑅𝑟𝑁) = (𝑅𝑟𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wo 845  w3a 1084   = wceq 1533  wcel 2098  Vcvv 3471  cun 3945   I cid 5577  ccnv 5679  dom cdm 5680  ran crn 5681  cres 5682  ccom 5684  (class class class)co 7424  0cc0 11144  1c1 11145   + caddc 11147  cn 12248  0cn0 12508  𝑟crelexp 15004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-cnex 11200  ax-resscn 11201  ax-1cn 11202  ax-icn 11203  ax-addcl 11204  ax-addrcl 11205  ax-mulcl 11206  ax-mulrcl 11207  ax-mulcom 11208  ax-addass 11209  ax-mulass 11210  ax-distr 11211  ax-i2m1 11212  ax-1ne0 11213  ax-1rid 11214  ax-rnegex 11215  ax-rrecex 11216  ax-cnre 11217  ax-pre-lttri 11218  ax-pre-lttrn 11219  ax-pre-ltadd 11220  ax-pre-mulgt0 11221
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-iun 5000  df-br 5151  df-opab 5213  df-mpt 5234  df-tr 5268  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-pred 6308  df-ord 6375  df-on 6376  df-lim 6377  df-suc 6378  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7875  df-2nd 7998  df-frecs 8291  df-wrecs 8322  df-recs 8396  df-rdg 8435  df-er 8729  df-en 8969  df-dom 8970  df-sdom 8971  df-pnf 11286  df-mnf 11287  df-xr 11288  df-ltxr 11289  df-le 11290  df-sub 11482  df-neg 11483  df-nn 12249  df-n0 12509  df-z 12595  df-uz 12859  df-seq 14005  df-relexp 15005
This theorem is referenced by:  relexpcnvd  15021  relexpnnrn  15030  relexpaddg  15038  cnvtrclfv  43157
  Copyright terms: Public domain W3C validator
OSZAR »