![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reltrls | Structured version Visualization version GIF version |
Description: The set (Trails‘𝐺) of all trails on 𝐺 is a set of pairs by our definition of a trail, and so is a relation. (Contributed by AV, 29-Oct-2021.) |
Ref | Expression |
---|---|
reltrls | ⊢ Rel (Trails‘𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-trls 29563 | . 2 ⊢ Trails = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝑔)𝑝 ∧ Fun ◡𝑓)}) | |
2 | 1 | relmptopab 7669 | 1 ⊢ Rel (Trails‘𝐺) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 Vcvv 3463 class class class wbr 5148 ◡ccnv 5676 Rel wrel 5682 Fun wfun 6541 ‘cfv 6547 Walkscwlks 29467 Trailsctrls 29561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6499 df-fun 6549 df-fv 6555 df-trls 29563 |
This theorem is referenced by: ispth 29594 isspth 29595 iscrct 29661 iseupth 30068 |
Copyright terms: Public domain | W3C validator |