![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isspth | Structured version Visualization version GIF version |
Description: Conditions for a pair of classes/functions to be a simple path (in an undirected graph). (Contributed by Alexander van der Vekens, 21-Oct-2017.) (Revised by AV, 9-Jan-2021.) (Revised by AV, 29-Oct-2021.) |
Ref | Expression |
---|---|
isspth | ⊢ (𝐹(SPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spthsfval 29578 | . 2 ⊢ (SPaths‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓(Trails‘𝐺)𝑝 ∧ Fun ◡𝑝)} | |
2 | cnveq 5870 | . . . 4 ⊢ (𝑝 = 𝑃 → ◡𝑝 = ◡𝑃) | |
3 | 2 | funeqd 6569 | . . 3 ⊢ (𝑝 = 𝑃 → (Fun ◡𝑝 ↔ Fun ◡𝑃)) |
4 | 3 | adantl 480 | . 2 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (Fun ◡𝑝 ↔ Fun ◡𝑃)) |
5 | reltrls 29550 | . 2 ⊢ Rel (Trails‘𝐺) | |
6 | 1, 4, 5 | brfvopabrbr 6996 | 1 ⊢ (𝐹(SPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 = wceq 1533 class class class wbr 5143 ◡ccnv 5671 Fun wfun 6536 ‘cfv 6542 Trailsctrls 29546 SPathscspths 29569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fv 6550 df-trls 29548 df-spths 29573 |
This theorem is referenced by: spthispth 29582 spthdifv 29589 spthdep 29590 pthdepisspth 29591 spthonepeq 29608 uhgrwkspth 29611 usgr2wlkspth 29615 usgr2pth 29620 2spthd 29794 0spth 29978 3spthd 30028 spthcycl 34795 |
Copyright terms: Public domain | W3C validator |