MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pthistrl Structured version   Visualization version   GIF version

Theorem pthistrl 29595
Description: A path is a trail (in an undirected graph). (Contributed by Alexander van der Vekens, 21-Oct-2017.) (Revised by AV, 9-Jan-2021.) (Proof shortened by AV, 30-Oct-2021.)
Assertion
Ref Expression
pthistrl (𝐹(Paths‘𝐺)𝑃𝐹(Trails‘𝐺)𝑃)

Proof of Theorem pthistrl
StepHypRef Expression
1 ispth 29593 . 2 (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅))
21simp1bi 1142 1 (𝐹(Paths‘𝐺)𝑃𝐹(Trails‘𝐺)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  cin 3944  c0 4323  {cpr 4631   class class class wbr 5148  ccnv 5676  cres 5679  cima 5680  Fun wfun 6541  cfv 6547  (class class class)co 7417  0cc0 11138  1c1 11139  ..^cfzo 13659  chash 14321  Trailsctrls 29560  Pathscpths 29582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5299  ax-nul 5306  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6499  df-fun 6549  df-fv 6555  df-ov 7420  df-trls 29562  df-pths 29586
This theorem is referenced by:  pthiswlk  29597  pthonpth  29618  isspthonpth  29619  usgr2trlspth  29631  usgr2pthspth  29632  cycliscrct  29669  spthcycl  34809
  Copyright terms: Public domain W3C validator
OSZAR »