![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isspthonpth | Structured version Visualization version GIF version |
Description: A pair of functions is a simple path between two given vertices iff it is a simple path starting and ending at the two vertices. (Contributed by Alexander van der Vekens, 9-Mar-2018.) (Revised by AV, 17-Jan-2021.) |
Ref | Expression |
---|---|
isspthonpth.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
isspthonpth | ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ 𝑊 ∧ 𝑃 ∈ 𝑍)) → (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃 ↔ (𝐹(SPaths‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isspthonpth.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | isspthson 29629 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ 𝑊 ∧ 𝑃 ∈ 𝑍)) → (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ∧ 𝐹(SPaths‘𝐺)𝑃))) |
3 | 1 | istrlson 29593 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ 𝑊 ∧ 𝑃 ∈ 𝑍)) → (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ∧ 𝐹(Trails‘𝐺)𝑃))) |
4 | 3 | adantr 479 | . . . . . 6 ⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ 𝑊 ∧ 𝑃 ∈ 𝑍)) ∧ 𝐹(SPaths‘𝐺)𝑃) → (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ∧ 𝐹(Trails‘𝐺)𝑃))) |
5 | spthispth 29612 | . . . . . . . . 9 ⊢ (𝐹(SPaths‘𝐺)𝑃 → 𝐹(Paths‘𝐺)𝑃) | |
6 | pthistrl 29611 | . . . . . . . . 9 ⊢ (𝐹(Paths‘𝐺)𝑃 → 𝐹(Trails‘𝐺)𝑃) | |
7 | 5, 6 | syl 17 | . . . . . . . 8 ⊢ (𝐹(SPaths‘𝐺)𝑃 → 𝐹(Trails‘𝐺)𝑃) |
8 | 7 | adantl 480 | . . . . . . 7 ⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ 𝑊 ∧ 𝑃 ∈ 𝑍)) ∧ 𝐹(SPaths‘𝐺)𝑃) → 𝐹(Trails‘𝐺)𝑃) |
9 | 8 | biantrud 530 | . . . . . 6 ⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ 𝑊 ∧ 𝑃 ∈ 𝑍)) ∧ 𝐹(SPaths‘𝐺)𝑃) → (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ∧ 𝐹(Trails‘𝐺)𝑃))) |
10 | spthiswlk 29614 | . . . . . . . 8 ⊢ (𝐹(SPaths‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | |
11 | 10 | adantl 480 | . . . . . . 7 ⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ 𝑊 ∧ 𝑃 ∈ 𝑍)) ∧ 𝐹(SPaths‘𝐺)𝑃) → 𝐹(Walks‘𝐺)𝑃) |
12 | 1 | iswlkon 29543 | . . . . . . . . 9 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ 𝑊 ∧ 𝑃 ∈ 𝑍)) → (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵))) |
13 | 3anass 1092 | . . . . . . . . 9 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) ↔ (𝐹(Walks‘𝐺)𝑃 ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵))) | |
14 | 12, 13 | bitrdi 286 | . . . . . . . 8 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ 𝑊 ∧ 𝑃 ∈ 𝑍)) → (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)))) |
15 | 14 | adantr 479 | . . . . . . 7 ⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ 𝑊 ∧ 𝑃 ∈ 𝑍)) ∧ 𝐹(SPaths‘𝐺)𝑃) → (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)))) |
16 | 11, 15 | mpbirand 705 | . . . . . 6 ⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ 𝑊 ∧ 𝑃 ∈ 𝑍)) ∧ 𝐹(SPaths‘𝐺)𝑃) → (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ↔ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵))) |
17 | 4, 9, 16 | 3bitr2d 306 | . . . . 5 ⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ 𝑊 ∧ 𝑃 ∈ 𝑍)) ∧ 𝐹(SPaths‘𝐺)𝑃) → (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ↔ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵))) |
18 | 17 | ex 411 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ 𝑊 ∧ 𝑃 ∈ 𝑍)) → (𝐹(SPaths‘𝐺)𝑃 → (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ↔ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)))) |
19 | 18 | pm5.32rd 576 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ 𝑊 ∧ 𝑃 ∈ 𝑍)) → ((𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ∧ 𝐹(SPaths‘𝐺)𝑃) ↔ (((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) ∧ 𝐹(SPaths‘𝐺)𝑃))) |
20 | 3anass 1092 | . . . 4 ⊢ ((𝐹(SPaths‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) ↔ (𝐹(SPaths‘𝐺)𝑃 ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵))) | |
21 | ancom 459 | . . . 4 ⊢ ((𝐹(SPaths‘𝐺)𝑃 ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) ↔ (((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) ∧ 𝐹(SPaths‘𝐺)𝑃)) | |
22 | 20, 21 | bitr2i 275 | . . 3 ⊢ ((((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) ∧ 𝐹(SPaths‘𝐺)𝑃) ↔ (𝐹(SPaths‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) |
23 | 19, 22 | bitrdi 286 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ 𝑊 ∧ 𝑃 ∈ 𝑍)) → ((𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ∧ 𝐹(SPaths‘𝐺)𝑃) ↔ (𝐹(SPaths‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵))) |
24 | 2, 23 | bitrd 278 | 1 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ 𝑊 ∧ 𝑃 ∈ 𝑍)) → (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃 ↔ (𝐹(SPaths‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 class class class wbr 5149 ‘cfv 6549 (class class class)co 7419 0cc0 11140 ♯chash 14325 Vtxcvtx 28881 Walkscwlks 29482 WalksOncwlkson 29483 Trailsctrls 29576 TrailsOnctrlson 29577 Pathscpths 29598 SPathscspths 29599 SPathsOncspthson 29601 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-n0 12506 df-z 12592 df-uz 12856 df-fz 13520 df-fzo 13663 df-wlks 29485 df-wlkson 29486 df-trls 29578 df-trlson 29579 df-pths 29602 df-spths 29603 df-spthson 29605 |
This theorem is referenced by: uhgrwkspth 29641 usgr2wlkspth 29645 wspthsnwspthsnon 29799 elwspths2spth 29850 |
Copyright terms: Public domain | W3C validator |