![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > reprle | Structured version Visualization version GIF version |
Description: Upper bound to the terms in the representations of 𝑀 as the sum of 𝑆 nonnegative integers from set 𝐴. (Contributed by Thierry Arnoux, 27-Dec-2021.) |
Ref | Expression |
---|---|
reprval.a | ⊢ (𝜑 → 𝐴 ⊆ ℕ) |
reprval.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
reprval.s | ⊢ (𝜑 → 𝑆 ∈ ℕ0) |
reprf.c | ⊢ (𝜑 → 𝐶 ∈ (𝐴(repr‘𝑆)𝑀)) |
reprle.x | ⊢ (𝜑 → 𝑋 ∈ (0..^𝑆)) |
Ref | Expression |
---|---|
reprle | ⊢ (𝜑 → (𝐶‘𝑋) ≤ 𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6897 | . 2 ⊢ (𝑎 = 𝑋 → (𝐶‘𝑎) = (𝐶‘𝑋)) | |
2 | fzofi 13972 | . . 3 ⊢ (0..^𝑆) ∈ Fin | |
3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → (0..^𝑆) ∈ Fin) |
4 | reprval.a | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℕ) | |
5 | reprval.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
6 | reprval.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ ℕ0) | |
7 | reprf.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ (𝐴(repr‘𝑆)𝑀)) | |
8 | 4, 5, 6, 7 | reprsum 34245 | . 2 ⊢ (𝜑 → Σ𝑎 ∈ (0..^𝑆)(𝐶‘𝑎) = 𝑀) |
9 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ (0..^𝑆)) → 𝐴 ⊆ ℕ) |
10 | 4, 5, 6, 7 | reprf 34244 | . . . . 5 ⊢ (𝜑 → 𝐶:(0..^𝑆)⟶𝐴) |
11 | 10 | ffvelcdmda 7094 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ (0..^𝑆)) → (𝐶‘𝑎) ∈ 𝐴) |
12 | 9, 11 | sseldd 3981 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ (0..^𝑆)) → (𝐶‘𝑎) ∈ ℕ) |
13 | 12 | nnrpd 13047 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ (0..^𝑆)) → (𝐶‘𝑎) ∈ ℝ+) |
14 | reprle.x | . 2 ⊢ (𝜑 → 𝑋 ∈ (0..^𝑆)) | |
15 | 1, 3, 8, 13, 14 | fsumub 32604 | 1 ⊢ (𝜑 → (𝐶‘𝑋) ≤ 𝑀) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2099 ⊆ wss 3947 class class class wbr 5148 ‘cfv 6548 (class class class)co 7420 Fincfn 8964 0cc0 11139 ≤ cle 11280 ℕcn 12243 ℕ0cn0 12503 ℤcz 12589 ..^cfzo 13660 reprcrepr 34240 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-inf2 9665 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 ax-pre-sup 11217 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-isom 6557 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9466 df-oi 9534 df-card 9963 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-div 11903 df-nn 12244 df-2 12306 df-3 12307 df-n0 12504 df-z 12590 df-uz 12854 df-rp 13008 df-ico 13363 df-fz 13518 df-fzo 13661 df-seq 14000 df-exp 14060 df-hash 14323 df-cj 15079 df-re 15080 df-im 15081 df-sqrt 15215 df-abs 15216 df-clim 15465 df-sum 15666 df-repr 34241 |
This theorem is referenced by: hgt750lemb 34288 |
Copyright terms: Public domain | W3C validator |