![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rexzrexnn0 | Structured version Visualization version GIF version |
Description: Rewrite an existential quantification restricted to integers into an existential quantification restricted to naturals. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
Ref | Expression |
---|---|
rexzrexnn0.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
rexzrexnn0.2 | ⊢ (𝑥 = -𝑦 → (𝜑 ↔ 𝜒)) |
Ref | Expression |
---|---|
rexzrexnn0 | ⊢ (∃𝑥 ∈ ℤ 𝜑 ↔ ∃𝑦 ∈ ℕ0 (𝜓 ∨ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elznn0 12597 | . . . . . . 7 ⊢ (𝑥 ∈ ℤ ↔ (𝑥 ∈ ℝ ∧ (𝑥 ∈ ℕ0 ∨ -𝑥 ∈ ℕ0))) | |
2 | 1 | simprbi 496 | . . . . . 6 ⊢ (𝑥 ∈ ℤ → (𝑥 ∈ ℕ0 ∨ -𝑥 ∈ ℕ0)) |
3 | 2 | adantr 480 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ 𝜑) → (𝑥 ∈ ℕ0 ∨ -𝑥 ∈ ℕ0)) |
4 | simpr 484 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℤ ∧ 𝜑) ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℕ0) | |
5 | simplr 768 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℤ ∧ 𝜑) ∧ 𝑥 ∈ ℕ0) → 𝜑) | |
6 | rexzrexnn0.1 | . . . . . . . . . . 11 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
7 | 6 | equcoms 2016 | . . . . . . . . . 10 ⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜓)) |
8 | 7 | bicomd 222 | . . . . . . . . 9 ⊢ (𝑦 = 𝑥 → (𝜓 ↔ 𝜑)) |
9 | 8 | rspcev 3608 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℕ0 ∧ 𝜑) → ∃𝑦 ∈ ℕ0 𝜓) |
10 | 4, 5, 9 | syl2anc 583 | . . . . . . 7 ⊢ (((𝑥 ∈ ℤ ∧ 𝜑) ∧ 𝑥 ∈ ℕ0) → ∃𝑦 ∈ ℕ0 𝜓) |
11 | 10 | ex 412 | . . . . . 6 ⊢ ((𝑥 ∈ ℤ ∧ 𝜑) → (𝑥 ∈ ℕ0 → ∃𝑦 ∈ ℕ0 𝜓)) |
12 | simpr 484 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℤ ∧ -𝑥 ∈ ℕ0) → -𝑥 ∈ ℕ0) | |
13 | zcn 12587 | . . . . . . . . . . . . . . 15 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
14 | 13 | negnegd 11586 | . . . . . . . . . . . . . 14 ⊢ (𝑥 ∈ ℤ → --𝑥 = 𝑥) |
15 | 14 | eqcomd 2734 | . . . . . . . . . . . . 13 ⊢ (𝑥 ∈ ℤ → 𝑥 = --𝑥) |
16 | negeq 11476 | . . . . . . . . . . . . . 14 ⊢ (𝑦 = -𝑥 → -𝑦 = --𝑥) | |
17 | 16 | eqeq2d 2739 | . . . . . . . . . . . . 13 ⊢ (𝑦 = -𝑥 → (𝑥 = -𝑦 ↔ 𝑥 = --𝑥)) |
18 | 15, 17 | syl5ibrcom 246 | . . . . . . . . . . . 12 ⊢ (𝑥 ∈ ℤ → (𝑦 = -𝑥 → 𝑥 = -𝑦)) |
19 | 18 | imp 406 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → 𝑥 = -𝑦) |
20 | rexzrexnn0.2 | . . . . . . . . . . 11 ⊢ (𝑥 = -𝑦 → (𝜑 ↔ 𝜒)) | |
21 | 19, 20 | syl 17 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → (𝜑 ↔ 𝜒)) |
22 | 21 | bicomd 222 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → (𝜒 ↔ 𝜑)) |
23 | 22 | adantlr 714 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℤ ∧ -𝑥 ∈ ℕ0) ∧ 𝑦 = -𝑥) → (𝜒 ↔ 𝜑)) |
24 | 12, 23 | rspcedv 3601 | . . . . . . 7 ⊢ ((𝑥 ∈ ℤ ∧ -𝑥 ∈ ℕ0) → (𝜑 → ∃𝑦 ∈ ℕ0 𝜒)) |
25 | 24 | impancom 451 | . . . . . 6 ⊢ ((𝑥 ∈ ℤ ∧ 𝜑) → (-𝑥 ∈ ℕ0 → ∃𝑦 ∈ ℕ0 𝜒)) |
26 | 11, 25 | orim12d 963 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ 𝜑) → ((𝑥 ∈ ℕ0 ∨ -𝑥 ∈ ℕ0) → (∃𝑦 ∈ ℕ0 𝜓 ∨ ∃𝑦 ∈ ℕ0 𝜒))) |
27 | 3, 26 | mpd 15 | . . . 4 ⊢ ((𝑥 ∈ ℤ ∧ 𝜑) → (∃𝑦 ∈ ℕ0 𝜓 ∨ ∃𝑦 ∈ ℕ0 𝜒)) |
28 | r19.43 3118 | . . . 4 ⊢ (∃𝑦 ∈ ℕ0 (𝜓 ∨ 𝜒) ↔ (∃𝑦 ∈ ℕ0 𝜓 ∨ ∃𝑦 ∈ ℕ0 𝜒)) | |
29 | 27, 28 | sylibr 233 | . . 3 ⊢ ((𝑥 ∈ ℤ ∧ 𝜑) → ∃𝑦 ∈ ℕ0 (𝜓 ∨ 𝜒)) |
30 | 29 | rexlimiva 3143 | . 2 ⊢ (∃𝑥 ∈ ℤ 𝜑 → ∃𝑦 ∈ ℕ0 (𝜓 ∨ 𝜒)) |
31 | nn0z 12607 | . . . . 5 ⊢ (𝑦 ∈ ℕ0 → 𝑦 ∈ ℤ) | |
32 | 6 | rspcev 3608 | . . . . 5 ⊢ ((𝑦 ∈ ℤ ∧ 𝜓) → ∃𝑥 ∈ ℤ 𝜑) |
33 | 31, 32 | sylan 579 | . . . 4 ⊢ ((𝑦 ∈ ℕ0 ∧ 𝜓) → ∃𝑥 ∈ ℤ 𝜑) |
34 | nn0negz 12624 | . . . . 5 ⊢ (𝑦 ∈ ℕ0 → -𝑦 ∈ ℤ) | |
35 | 20 | rspcev 3608 | . . . . 5 ⊢ ((-𝑦 ∈ ℤ ∧ 𝜒) → ∃𝑥 ∈ ℤ 𝜑) |
36 | 34, 35 | sylan 579 | . . . 4 ⊢ ((𝑦 ∈ ℕ0 ∧ 𝜒) → ∃𝑥 ∈ ℤ 𝜑) |
37 | 33, 36 | jaodan 956 | . . 3 ⊢ ((𝑦 ∈ ℕ0 ∧ (𝜓 ∨ 𝜒)) → ∃𝑥 ∈ ℤ 𝜑) |
38 | 37 | rexlimiva 3143 | . 2 ⊢ (∃𝑦 ∈ ℕ0 (𝜓 ∨ 𝜒) → ∃𝑥 ∈ ℤ 𝜑) |
39 | 30, 38 | impbii 208 | 1 ⊢ (∃𝑥 ∈ ℤ 𝜑 ↔ ∃𝑦 ∈ ℕ0 (𝜓 ∨ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 846 = wceq 1534 ∈ wcel 2099 ∃wrex 3066 ℝcr 11131 -cneg 11469 ℕ0cn0 12496 ℤcz 12582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11274 df-mnf 11275 df-ltxr 11277 df-sub 11470 df-neg 11471 df-nn 12237 df-n0 12497 df-z 12583 |
This theorem is referenced by: dvdsrabdioph 42224 |
Copyright terms: Public domain | W3C validator |