![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ringinveu | Structured version Visualization version GIF version |
Description: If a ring unit element 𝑋 admits both a left inverse 𝑌 and a right inverse 𝑍, they are equal. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
Ref | Expression |
---|---|
isdrng4.b | ⊢ 𝐵 = (Base‘𝑅) |
isdrng4.0 | ⊢ 0 = (0g‘𝑅) |
isdrng4.1 | ⊢ 1 = (1r‘𝑅) |
isdrng4.x | ⊢ · = (.r‘𝑅) |
isdrng4.u | ⊢ 𝑈 = (Unit‘𝑅) |
isdrng4.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
ringinveu.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
ringinveu.2 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
ringinveu.3 | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
ringinveu.4 | ⊢ (𝜑 → (𝑌 · 𝑋) = 1 ) |
ringinveu.5 | ⊢ (𝜑 → (𝑋 · 𝑍) = 1 ) |
Ref | Expression |
---|---|
ringinveu | ⊢ (𝜑 → 𝑍 = 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringinveu.5 | . . 3 ⊢ (𝜑 → (𝑋 · 𝑍) = 1 ) | |
2 | 1 | oveq2d 7436 | . 2 ⊢ (𝜑 → (𝑌 · (𝑋 · 𝑍)) = (𝑌 · 1 )) |
3 | ringinveu.4 | . . . 4 ⊢ (𝜑 → (𝑌 · 𝑋) = 1 ) | |
4 | 3 | oveq1d 7435 | . . 3 ⊢ (𝜑 → ((𝑌 · 𝑋) · 𝑍) = ( 1 · 𝑍)) |
5 | isdrng4.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
6 | isdrng4.x | . . . 4 ⊢ · = (.r‘𝑅) | |
7 | isdrng4.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
8 | ringinveu.2 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
9 | ringinveu.1 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
10 | ringinveu.3 | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
11 | 5, 6, 7, 8, 9, 10 | ringassd 20197 | . . 3 ⊢ (𝜑 → ((𝑌 · 𝑋) · 𝑍) = (𝑌 · (𝑋 · 𝑍))) |
12 | isdrng4.1 | . . . 4 ⊢ 1 = (1r‘𝑅) | |
13 | 5, 6, 12, 7, 10 | ringlidmd 20208 | . . 3 ⊢ (𝜑 → ( 1 · 𝑍) = 𝑍) |
14 | 4, 11, 13 | 3eqtr3d 2776 | . 2 ⊢ (𝜑 → (𝑌 · (𝑋 · 𝑍)) = 𝑍) |
15 | 5, 6, 12, 7, 8 | ringridmd 20209 | . 2 ⊢ (𝜑 → (𝑌 · 1 ) = 𝑌) |
16 | 2, 14, 15 | 3eqtr3d 2776 | 1 ⊢ (𝜑 → 𝑍 = 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ‘cfv 6548 (class class class)co 7420 Basecbs 17180 .rcmulr 17234 0gc0g 17421 1rcur 20121 Ringcrg 20173 Unitcui 20294 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-nn 12244 df-2 12306 df-sets 17133 df-slot 17151 df-ndx 17163 df-base 17181 df-plusg 17246 df-0g 17423 df-mgm 18600 df-sgrp 18679 df-mnd 18695 df-mgp 20075 df-ur 20122 df-ring 20175 |
This theorem is referenced by: isdrng4 32975 drngidl 33162 qsdrngi 33219 |
Copyright terms: Public domain | W3C validator |