MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlim2lt Structured version   Visualization version   GIF version

Theorem rlim2lt 15475
Description: Use strictly less-than in place of less equal in the real limit predicate. (Contributed by Mario Carneiro, 18-Sep-2014.)
Hypotheses
Ref Expression
rlim2.1 (𝜑 → ∀𝑧𝐴 𝐵 ∈ ℂ)
rlim2.2 (𝜑𝐴 ⊆ ℝ)
rlim2.3 (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
rlim2lt (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 𝐶 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦,𝑧   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧)   𝐵(𝑧)

Proof of Theorem rlim2lt
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 rlim2.1 . . . 4 (𝜑 → ∀𝑧𝐴 𝐵 ∈ ℂ)
2 rlim2.2 . . . 4 (𝜑𝐴 ⊆ ℝ)
3 rlim2.3 . . . 4 (𝜑𝐶 ∈ ℂ)
41, 2, 3rlim2 15474 . . 3 (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 𝐶 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
5 simplr 767 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧𝐴) → 𝑦 ∈ ℝ)
6 simpl 481 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ) → 𝐴 ⊆ ℝ)
76sselda 3976 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧𝐴) → 𝑧 ∈ ℝ)
8 ltle 11333 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑦 < 𝑧𝑦𝑧))
95, 7, 8syl2anc 582 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧𝐴) → (𝑦 < 𝑧𝑦𝑧))
109imim1d 82 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧𝐴) → ((𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → (𝑦 < 𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
1110ralimdva 3156 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ) → (∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → ∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
122, 11sylan 578 . . . . 5 ((𝜑𝑦 ∈ ℝ) → (∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → ∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
1312reximdva 3157 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → ∃𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
1413ralimdv 3158 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
154, 14sylbid 239 . 2 (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 𝐶 → ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
16 peano2re 11418 . . . . . . 7 (𝑦 ∈ ℝ → (𝑦 + 1) ∈ ℝ)
1716adantl 480 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (𝑦 + 1) ∈ ℝ)
18 ltp1 12085 . . . . . . . . . . 11 (𝑦 ∈ ℝ → 𝑦 < (𝑦 + 1))
1918ad2antlr 725 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧𝐴) → 𝑦 < (𝑦 + 1))
2016ad2antlr 725 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧𝐴) → (𝑦 + 1) ∈ ℝ)
21 ltletr 11337 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ (𝑦 + 1) ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑦 < (𝑦 + 1) ∧ (𝑦 + 1) ≤ 𝑧) → 𝑦 < 𝑧))
225, 20, 7, 21syl3anc 1368 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧𝐴) → ((𝑦 < (𝑦 + 1) ∧ (𝑦 + 1) ≤ 𝑧) → 𝑦 < 𝑧))
2319, 22mpand 693 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧𝐴) → ((𝑦 + 1) ≤ 𝑧𝑦 < 𝑧))
2423imim1d 82 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧𝐴) → ((𝑦 < 𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → ((𝑦 + 1) ≤ 𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
2524ralimdva 3156 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ) → (∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → ∀𝑧𝐴 ((𝑦 + 1) ≤ 𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
262, 25sylan 578 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → ∀𝑧𝐴 ((𝑦 + 1) ≤ 𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
27 breq1 5152 . . . . . . 7 (𝑤 = (𝑦 + 1) → (𝑤𝑧 ↔ (𝑦 + 1) ≤ 𝑧))
2827rspceaimv 3612 . . . . . 6 (((𝑦 + 1) ∈ ℝ ∧ ∀𝑧𝐴 ((𝑦 + 1) ≤ 𝑧 → (abs‘(𝐵𝐶)) < 𝑥)) → ∃𝑤 ∈ ℝ ∀𝑧𝐴 (𝑤𝑧 → (abs‘(𝐵𝐶)) < 𝑥))
2917, 26, 28syl6an 682 . . . . 5 ((𝜑𝑦 ∈ ℝ) → (∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → ∃𝑤 ∈ ℝ ∀𝑧𝐴 (𝑤𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
3029rexlimdva 3144 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → ∃𝑤 ∈ ℝ ∀𝑧𝐴 (𝑤𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
3130ralimdv 3158 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → ∀𝑥 ∈ ℝ+𝑤 ∈ ℝ ∀𝑧𝐴 (𝑤𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
321, 2, 3rlim2 15474 . . 3 (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 𝐶 ↔ ∀𝑥 ∈ ℝ+𝑤 ∈ ℝ ∀𝑧𝐴 (𝑤𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
3331, 32sylibrd 258 . 2 (𝜑 → (∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → (𝑧𝐴𝐵) ⇝𝑟 𝐶))
3415, 33impbid 211 1 (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 𝐶 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wcel 2098  wral 3050  wrex 3059  wss 3944   class class class wbr 5149  cmpt 5232  cfv 6548  (class class class)co 7418  cc 11137  cr 11138  1c1 11140   + caddc 11142   < clt 11279  cle 11280  cmin 11475  +crp 13007  abscabs 15215  𝑟 crli 15463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-po 5590  df-so 5591  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7374  df-ov 7421  df-oprab 7422  df-mpo 7423  df-er 8724  df-pm 8847  df-en 8964  df-dom 8965  df-sdom 8966  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-rlim 15467
This theorem is referenced by:  rlim0lt  15487  rlimcnp  26937  xrlimcnp  26940
  Copyright terms: Public domain W3C validator
OSZAR »